summaryrefslogtreecommitdiffstats
path: root/docs/writeups/IceCTF_2018/Hot_or_Not.txt
blob: f50a29513da0a385142571cb975fb35ca049d98b (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
"According to my friend Zuck, the first step on the path to great power is to
rate the relative hotness of stuff... think Hot or Not."


Setup
-----
We are provided a JPEG image.

hotornot.jpg shows the original in its entirety, with the caviot that this one
is scaled WAY down and compressed more heavily.  The actual original is very
large (19488x19488, 69 MB).

hotornot_detail.jpg shows a small detailed portion of the original image.  We
can see that the original is made up of a grid of images, either pictures of
hotdogs or pictures of dogs.


Ideas
-----
This was a steganography task.  As with tasks like this we first try the usual
cheap searching techniques,  strings, binwalk, and hexdump to look for anything
that sticks out.  Once reasonably sure there was nothing there, we moved on to
the image data.

The original image, as stated before, is a grid of embedded images.  Each one
measured to be 224x224 pixels.  The entire image is 19488x19488, which means it
is 87 embedded images across and 87 tall.

Given the state of things and the clues dropped in the task title and
description, we were fairly confident in guessing this was a game of
hotdog-notdog.

This comes from an episode of the HBO show "Silicon Valley", where one of the
characters designs a mobile app which can identify food.  In reality, it can
only identify hotdogs and will otherwise report that the picture is *not* of a
hotdog.  Today I learned that this is actually a real thing, with a trained AI
and public API on the internet.  As I'm going back and writing this up, I can't
find the website we used anymore.  But here's the API from my script
"https://api.deepai.org/hot_dog_or_not".  Hit that with a POST to have an image
analyzed (as we will see below).

With a plan formulating, we are theorizing on what the hotdog-notdog results
will mean.  We want to try interpreting the results as bits, packing every 8
into a byte, and reading the resulting stream.  Otherwise, we will try
overlaying the results back on the original image to see if a visual pattern
emerges.


Solution
--------

# Image Analysis
Starting with our original image above, we want to offload the analysis of each
embedded image to the API we found.  As a convention, I will be refering to
these embedded images as cells.

The first step was extracting each cell into its own image file.  For this I
wrote a C program utilizing libjpeg (See Appendix A).  This left us with a
directory of files "imgXxY.jpg", where X and Y are the corresponding row and
column of the cell in grid-space [0, 87).

The website we found the AI engine on had some minimal documentation on its API
and left us with a curl command to interact with it.  It just takes a POST
passing it the URL to an image to analyze.

curl -X POST -d '{"img_url": "http://..."}' https://api.deepai.org/hot_dog_or_not

Note that it takes images by URL when using the API.  So we had to host the
images somewhere.  I just resorted to our trusty internal server and opened the
firewall gates!

To automate the process of calling the API with each image, the following
scripts were written.  The first Python script just procedurally generates all
the filenames of all the cell images.  The second Bash script takes each name,
plugs it into a full URL and makes the curl call, writing the results to a
image-specific text file.

#!/usr/bin/env python
for row in range(87):
    for col in range(87):
        print(f"img{row}x{col}.jpg")

#!/bin/bash -e

# Read names off stdin, tell deepai to check it out from host #
while read name; do
    URL="{\"img_url\":\"http://<REDACTED>/cells/$name\"}"
    curl -X POST -d $URL 'https://api.deepai.org/hot_dog_or_not' >results/$name.txt
done

We now have a directory of imgXxY.jpg files and another of imgXxY.jpg.txt files.
Each text file contains the analysis result of its corresponding cell image file.
The contents of the text files looks like this:

{"is_hot_dog": "hot dog"}

in the case of a hotdog, and

{"is_hot_dog": "not hot dog"}

in the case of a notdog.  So, we can check one by searching it for the word
"not".


# Interpreting Data
We first tried inspecting the bitstream which resulted from image analysis.
Calling each hotdog a 1 and each notdog a 0 and packing each 8 into a byte, no
recognizable data can be found in the resulting bitstream.  The same happens
when calling hotdogs 0 and vice-virsa.  We know that there are some false
results back from the AI, but were assuming that the data would be more-or-less
kinda readable as a starting point.

Moving on to an image overlay.  We produce a copy of the original image, with
each hotdog covered with white pixels and each notdog covered with black pixels
(see Appendix B).  No patterns initially jumped out, but after a while of
studying I started to think I was seeing a QR code in the noise.  We both
confirmed some characteristics of the image to gauge the likelyhood of this and
decided to presue it.


## QR Code
'hotornot_initial_overlay.jpg' shows our initial image overlay.  The cell
resolution is still 87x87, which is not a valid code according to the standard.
We noticed that the original image happened to always contain hotdog and notdog
images in clusters of 3x3 cells, which was really useful for two reasons.  First,
this gave us a way to weed-out some false results from the AI, just group cells
together and produce a cluster based on the majority result.  Second, once we
scaled-down our image by replacing cells with clusters, we have an image which
is 29x29 clusters, and this *is* a valid code version as described in the
standard.  It's version 3.

We regenerated our QR code using a cluster-oriented approach (See Appendix C).
We also inverted the colors since we noticed a few things that didn't quite make
sense in the original.  This produced 'hotornot_refined_overlay.jpg'.  This is
still not a valid QR code as it is missing the large markers in the corners and
a few pixels are still malformed according to the version 3 standard.  In
particular, this included some alternating patterns along the top and left-hand
side, as well as the small square marker towards the bottom-right.  We suspect
these subtle remaining flaws were unintended by the problem designers, since we
can see what images we expect back in the original.  It was probably just
unlucky bad results from the AI.

We fixed up the small errors and manually drew in the large corner markers.
This produced 'hotornot_final_overlay.png'.  Upon scanning this image with a QR
code reader, we finally recovered the flag.

IceCTF{h0td1gg1tyd0g}


== Appendices ==
=== Appendix A ===
C code to split original image into cells

#include <stdio.h>
#include <stdlib.h>
#include <jpeglib.h>

void write_cell(unsigned int matr, unsigned int matc,
        unsigned char *buff, unsigned long fwid)
{
    struct jpeg_compress_struct cinfo;
    struct jpeg_error_mgr jerr;

    /* this is a pointer to one row of image data */
    JSAMPROW row_pointer[1];

    char fname[32];
    sprintf(fname, "img%ix%i.jpg", matr, matc);

    FILE *outfile = fopen(fname, "wb"); // res

    if (!outfile)
    {
        fprintf(stderr, "Failed to open output file '%s'\n", fname);
        return;
    }

    cinfo.err = jpeg_std_error( &jerr );
    jpeg_create_compress(&cinfo);
    jpeg_stdio_dest(&cinfo, outfile);

    /* Setting the parameters of the output file here */
    cinfo.image_width = 224;
    cinfo.image_height = 224;
    cinfo.input_components = 3;
    cinfo.in_color_space = JCS_RGB;
    /* default compression parameters, we shouldn't be worried about these */
    jpeg_set_defaults( &cinfo );
    /* Now do the compression .. */
    jpeg_start_compress( &cinfo, TRUE );


    unsigned long row = matr * 224;
    unsigned long col = matc * 224;

    while (cinfo.next_scanline < cinfo.image_height)
    {
        unsigned long idx = (cinfo.next_scanline + row) * fwid * cinfo.input_components;
        idx += col * cinfo.input_components;

        row_pointer[0] = &buff[idx];
        jpeg_write_scanlines(&cinfo, row_pointer, 1);
    }


    /* similar to read file, clean up after we're done compressing */
    jpeg_finish_compress( &cinfo );
    jpeg_destroy_compress( &cinfo );
    fclose( outfile );
}

int main(int argc, char **argv)
{
    if (argc < 2)
    {
        fprintf(stderr, "Usage: %s <file>\n", argv[0]);
        return 1;
    }

    char *file = argv[1];

    struct jpeg_decompress_struct jds;
    struct jpeg_error_mgr err;

    FILE *f;
    f = fopen(file, "rb"); // res
    if (!f)
    {
        fprintf(stderr, "Failed to open file\n");
        return 1;
    }

    jds.err = jpeg_std_error(&err);
    jpeg_create_decompress(&jds); // res
    jpeg_stdio_src(&jds, f);
    jpeg_read_header(&jds, TRUE);
    jpeg_start_decompress(&jds);

    unsigned long width = jds.output_width;
    unsigned long height = jds.output_height;
    unsigned char *buff = malloc(width * height * 3); // res
    unsigned char *tmp[1];

    if (!buff)
    {
        fprintf(stderr, "Could not allocate image buffer\n");
        jpeg_finish_decompress(&jds);
        return 1;
    }

    while (jds.output_scanline < height)
    {
        tmp[0] = buff + (3 * width * jds.output_scanline);
        jpeg_read_scanlines(&jds, tmp, 1);
    }

    jpeg_finish_decompress(&jds);
    jpeg_destroy_decompress(&jds);
    fclose(f);


    /* we have the img in memory now, write every 224x224
     * block of pixels out to a matrix of files 'img0x0.jpg' */
    unsigned int matr = 0;
    unsigned int matc = 0;

    printf("width:  %li\n", width);
    printf("height: %li\n", height);

    /* lines */
    for (matr = 0; (matr * 224) < height; matr++)
    {
        /* cells */
        for (matc = 0; (matc * 224) < width; matc++)
            write_cell(matr, matc, buff, width);
    }

    printf("rows: %i\n", matr);
    printf("cols: %i\n", matc);

    free(buff);
    return 0;
}


=== Appendix B ===
C code to produce initial QR code image

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <jpeglib.h>

void interpret_cell(unsigned int matr, unsigned int matc,
        unsigned char *buff, unsigned long fwid)
{
    char results_file[32], line[64];
    sprintf(results_file, "deepai/results/img%ix%i.jpg.txt", matr, matc);

    FILE *rf = fopen(results_file, "r"); // res

    if (!rf)
    {
        fprintf(stderr, "Failed to open results file '%s'\n", results_file);
        return;
    }

    fgets(line, 64, rf);
    char *not = strstr(line, "not");

    unsigned long height = 224;
    unsigned long width =  224;
    unsigned char *linebuff = malloc(3 * width); // res

    if (!linebuff)
    {
        fprintf(stderr, "Failed to allocate result tmp buffer\n");
        fclose(rf);
        return;
    }

    if (not)
        memset(linebuff, 0, 3*width);
    else
        memset(linebuff, 255, 3*width);

    unsigned long i;

    unsigned long row = matr * 224;
    unsigned long col = matc * 224;

    for (i = 0; i < height; i++)
    {
        unsigned long idx = (i + row) * fwid * 3;
        idx += col * 3;

        unsigned char *ptr = &buff[idx];
        memcpy(ptr, linebuff, 3*width);
    }

    free(linebuff);
    fclose(rf);
}

void write_img(unsigned char *buff, unsigned long width, unsigned long height)
{
    struct jpeg_compress_struct cinfo;
    struct jpeg_error_mgr jerr;

    /* this is a pointer to one row of image data */
    JSAMPROW row_pointer[1];

    char fname[32];
    sprintf(fname, "myoutput.jpg");

    FILE *outfile = fopen(fname, "wb"); // res

    if (!outfile)
    {
        fprintf(stderr, "Failed to open output file '%s'\n", fname);
        return;
    }

    cinfo.err = jpeg_std_error( &jerr );
    jpeg_create_compress(&cinfo);
    jpeg_stdio_dest(&cinfo, outfile);

    /* Setting the parameters of the output file here */
    cinfo.image_width = width;
    cinfo.image_height = height;
    cinfo.input_components = 3;
    cinfo.in_color_space = JCS_RGB;
    /* default compression parameters, we shouldn't be worried about these */
    jpeg_set_defaults( &cinfo );
    /* Now do the compression .. */
    jpeg_start_compress( &cinfo, TRUE );


    while (cinfo.next_scanline < cinfo.image_height)
    {
        row_pointer[0] = &buff[cinfo.next_scanline * width * cinfo.input_components];
        jpeg_write_scanlines(&cinfo, row_pointer, 1);
    }


    /* similar to read file, clean up after we're done compressing */
    jpeg_finish_compress( &cinfo );
    jpeg_destroy_compress( &cinfo );
    fclose( outfile );
}

int main(int argc, char **argv)
{
    if (argc < 2)
    {
        fprintf(stderr, "Usage: %s <file>\n", argv[0]);
        return 1;
    }

    char *file = argv[1];

    struct jpeg_decompress_struct jds;
    struct jpeg_error_mgr err;

    FILE *f;
    f = fopen(file, "rb"); // res
    if (!f)
    {
        fprintf(stderr, "Failed to open file\n");
        return 1;
    }

    jds.err = jpeg_std_error(&err);
    jpeg_create_decompress(&jds); // res
    jpeg_stdio_src(&jds, f);
    jpeg_read_header(&jds, TRUE);
    jpeg_start_decompress(&jds);

    unsigned long width = jds.output_width;
    unsigned long height = jds.output_height;
    unsigned char *buff = malloc(width * height * 3); // res
    unsigned char *tmp[1];

    if (!buff)
    {
        fprintf(stderr, "Could not allocate image buffer\n");
        jpeg_finish_decompress(&jds);
        return 1;
    }

    while (jds.output_scanline < height)
    {
        tmp[0] = buff + (3 * width * jds.output_scanline);
        jpeg_read_scanlines(&jds, tmp, 1);
    }

    jpeg_finish_decompress(&jds);
    jpeg_destroy_decompress(&jds);
    fclose(f);


    unsigned int matr = 0;
    unsigned int matc = 0;

    printf("width:  %li\n", width);
    printf("height: %li\n", height);

    /* lines */
    for (matr = 0; (matr * 224) < height; matr++)
    {
        /* cells */
        for (matc = 0; (matc * 224) < width; matc++)
            interpret_cell(matr, matc, buff, width);
    }

    printf("rows: %i\n", matr);
    printf("cols: %i\n", matc);

    write_img(buff, width, height);

    free(buff);
    return 0;
}


=== Appendix C ===
C code to produce clustered QR code image.  We switched to PNG format to
eliminate JPEG compression artifacts.  This program also writes an image that is
1 pixel per cluster, to aid manual editing.

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#define PNG_DEBUG 3
#include <png.h>

#define OUT_DIM 29
#define IMG_LEN ((OUT_DIM*OUT_DIM)/8)
#define ORIG_DIM 87

#define FILE_NAME "myoutput.png"

unsigned int get_px_idx(unsigned int wid, unsigned int row,
        unsigned int col)
{
    return (row*wid) + col;
}

/* transform from cluster-space into cell-space */
unsigned int get_cell_output_px_idx(unsigned cell_row,
        unsigned cell_col)
{
    return get_px_idx(OUT_DIM, cell_row/3, cell_col/3);
}

void write_image(unsigned char *buff)
{
    png_structp png_ptr;
    png_infop info_ptr;

        /* create file */
        FILE *fp = fopen(FILE_NAME, "wb");
        if (!fp)
                printf("[write_png_file] File %s could not be opened for writing", FILE_NAME);


        /* initialize stuff */
        png_ptr = png_create_write_struct(PNG_LIBPNG_VER_STRING, NULL, NULL, NULL);

        if (!png_ptr)
                printf("[write_png_file] png_create_write_struct failed");

        info_ptr = png_create_info_struct(png_ptr);
        if (!info_ptr)
                printf("[write_png_file] png_create_info_struct failed");

        if (setjmp(png_jmpbuf(png_ptr)))
                printf("[write_png_file] Error during init_io");

        png_init_io(png_ptr, fp);


        /* write header */
        if (setjmp(png_jmpbuf(png_ptr)))
                printf("[write_png_file] Error during writing header");

        png_set_IHDR(png_ptr, info_ptr, OUT_DIM, OUT_DIM,
                     8, PNG_COLOR_TYPE_GRAY, PNG_INTERLACE_NONE,
                     PNG_COMPRESSION_TYPE_DEFAULT, PNG_FILTER_TYPE_DEFAULT);

        png_write_info(png_ptr, info_ptr);


        /* write bytes */
        if (setjmp(png_jmpbuf(png_ptr)))
                printf("[write_png_file] Error during writing bytes");

        unsigned int row;
        for (row=0; row < OUT_DIM; row++)
            png_write_row(png_ptr, &buff[get_px_idx(OUT_DIM, row, 0)]);

        //png_write_image(png_ptr, &buff);


        /* end write */
        if (setjmp(png_jmpbuf(png_ptr)))
                printf("[write_png_file] Error during end of write");

        png_write_end(png_ptr, NULL);

        fclose(fp);
}

int interpret_cell(unsigned int cell_row, unsigned int cell_col)
{
    char fname[32], line[64];

    snprintf(fname, 32, "deepai/results/img%ix%i.jpg.txt",
            cell_row, cell_col);

    FILE *f = fopen(fname, "r");
    if (!f)
    {
        fprintf(stderr, "Failed to open result file '%s'\n", fname);
        return 0;
    }

    fgets(line, 64, f);
    char *not = strstr(line, "not");
    fclose(f);

    return not == NULL;
}

int main()
{
    /* output image information */
    unsigned char *outbuff = malloc(OUT_DIM*OUT_DIM);
    memset(outbuff, 0, OUT_DIM*OUT_DIM);


    /* iterate original cells (not clusters) */
    unsigned int cell_row, cell_col;

    for (cell_row = 0; cell_row < ORIG_DIM; cell_row++)
    {
        for (cell_col = 0; cell_col < ORIG_DIM; cell_col++)
        {
            int res = interpret_cell(cell_row, cell_col);
            outbuff[get_cell_output_px_idx(cell_row, cell_col)] += res;
        }
    }


    /* counts to colors */
    unsigned int r, c;

    for (r = 0 ; r < OUT_DIM; r++)
    {
        for (c = 0; c < OUT_DIM; c++)
        {
            unsigned int idx = get_px_idx(OUT_DIM, r, c);
            if (outbuff[idx] >= 5)
                outbuff[idx] = 0;
            else
                outbuff[idx] = 255;
        }
    }


    /* write image */
    write_image(outbuff);

    free(outbuff);
    return 0;
}