diff options
Diffstat (limited to 'cryptopp562/rijndael.cpp')
-rw-r--r-- | cryptopp562/rijndael.cpp | 1261 |
1 files changed, 1261 insertions, 0 deletions
diff --git a/cryptopp562/rijndael.cpp b/cryptopp562/rijndael.cpp new file mode 100644 index 0000000..c185032 --- /dev/null +++ b/cryptopp562/rijndael.cpp @@ -0,0 +1,1261 @@ +// rijndael.cpp - modified by Chris Morgan <cmorgan@wpi.edu> +// and Wei Dai from Paulo Baretto's Rijndael implementation +// The original code and all modifications are in the public domain. + +// use "cl /EP /P /DCRYPTOPP_GENERATE_X64_MASM rijndael.cpp" to generate MASM code + +/* +July 2010: Added support for AES-NI instructions via compiler intrinsics. +*/ + +/* +Feb 2009: The x86/x64 assembly code was rewritten in by Wei Dai to do counter mode +caching, which was invented by Hongjun Wu and popularized by Daniel J. Bernstein +and Peter Schwabe in their paper "New AES software speed records". The round +function was also modified to include a trick similar to one in Brian Gladman's +x86 assembly code, doing an 8-bit register move to minimize the number of +register spills. Also switched to compressed tables and copying round keys to +the stack. + +The C++ implementation now uses compressed tables if +CRYPTOPP_ALLOW_UNALIGNED_DATA_ACCESS is defined. +*/ + +/* +July 2006: Defense against timing attacks was added in by Wei Dai. + +The code now uses smaller tables in the first and last rounds, +and preloads them into L1 cache before usage (by loading at least +one element in each cache line). + +We try to delay subsequent accesses to each table (used in the first +and last rounds) until all of the table has been preloaded. Hopefully +the compiler isn't smart enough to optimize that code away. + +After preloading the table, we also try not to access any memory location +other than the table and the stack, in order to prevent table entries from +being unloaded from L1 cache, until that round is finished. +(Some popular CPUs have 2-way associative caches.) +*/ + +// This is the original introductory comment: + +/** + * version 3.0 (December 2000) + * + * Optimised ANSI C code for the Rijndael cipher (now AES) + * + * author Vincent Rijmen <vincent.rijmen@esat.kuleuven.ac.be> + * author Antoon Bosselaers <antoon.bosselaers@esat.kuleuven.ac.be> + * author Paulo Barreto <paulo.barreto@terra.com.br> + * + * This code is hereby placed in the public domain. + * + * THIS SOFTWARE IS PROVIDED BY THE AUTHORS ''AS IS'' AND ANY EXPRESS + * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED + * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE + * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE + * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR + * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF + * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR + * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, + * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE + * OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, + * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + */ + +#include "pch.h" + +#ifndef CRYPTOPP_IMPORTS +#ifndef CRYPTOPP_GENERATE_X64_MASM + +#include "rijndael.h" +#include "misc.h" +#include "cpu.h" + +NAMESPACE_BEGIN(CryptoPP) + +#ifdef CRYPTOPP_ALLOW_UNALIGNED_DATA_ACCESS +#if CRYPTOPP_BOOL_SSE2_ASM_AVAILABLE || defined(CRYPTOPP_X64_MASM_AVAILABLE) +namespace rdtable {CRYPTOPP_ALIGN_DATA(16) word64 Te[256+2];} +using namespace rdtable; +#else +static word64 Te[256]; +#endif +static word64 Td[256]; +#else +static word32 Te[256*4], Td[256*4]; +#endif +static volatile bool s_TeFilled = false, s_TdFilled = false; + +// ************************* Portable Code ************************************ + +#define QUARTER_ROUND(L, T, t, a, b, c, d) \ + a ^= L(T, 3, byte(t)); t >>= 8;\ + b ^= L(T, 2, byte(t)); t >>= 8;\ + c ^= L(T, 1, byte(t)); t >>= 8;\ + d ^= L(T, 0, t); + +#define QUARTER_ROUND_LE(t, a, b, c, d) \ + tempBlock[a] = ((byte *)(Te+byte(t)))[1]; t >>= 8;\ + tempBlock[b] = ((byte *)(Te+byte(t)))[1]; t >>= 8;\ + tempBlock[c] = ((byte *)(Te+byte(t)))[1]; t >>= 8;\ + tempBlock[d] = ((byte *)(Te+t))[1]; + +#ifdef CRYPTOPP_ALLOW_UNALIGNED_DATA_ACCESS + #define QUARTER_ROUND_LD(t, a, b, c, d) \ + tempBlock[a] = ((byte *)(Td+byte(t)))[GetNativeByteOrder()*7]; t >>= 8;\ + tempBlock[b] = ((byte *)(Td+byte(t)))[GetNativeByteOrder()*7]; t >>= 8;\ + tempBlock[c] = ((byte *)(Td+byte(t)))[GetNativeByteOrder()*7]; t >>= 8;\ + tempBlock[d] = ((byte *)(Td+t))[GetNativeByteOrder()*7]; +#else + #define QUARTER_ROUND_LD(t, a, b, c, d) \ + tempBlock[a] = Sd[byte(t)]; t >>= 8;\ + tempBlock[b] = Sd[byte(t)]; t >>= 8;\ + tempBlock[c] = Sd[byte(t)]; t >>= 8;\ + tempBlock[d] = Sd[t]; +#endif + +#define QUARTER_ROUND_E(t, a, b, c, d) QUARTER_ROUND(TL_M, Te, t, a, b, c, d) +#define QUARTER_ROUND_D(t, a, b, c, d) QUARTER_ROUND(TL_M, Td, t, a, b, c, d) + +#ifdef IS_LITTLE_ENDIAN + #define QUARTER_ROUND_FE(t, a, b, c, d) QUARTER_ROUND(TL_F, Te, t, d, c, b, a) + #define QUARTER_ROUND_FD(t, a, b, c, d) QUARTER_ROUND(TL_F, Td, t, d, c, b, a) + #ifdef CRYPTOPP_ALLOW_UNALIGNED_DATA_ACCESS + #define TL_F(T, i, x) (*(word32 *)((byte *)T + x*8 + (6-i)%4+1)) + #define TL_M(T, i, x) (*(word32 *)((byte *)T + x*8 + (i+3)%4+1)) + #else + #define TL_F(T, i, x) rotrFixed(T[x], (3-i)*8) + #define TL_M(T, i, x) T[i*256 + x] + #endif +#else + #define QUARTER_ROUND_FE(t, a, b, c, d) QUARTER_ROUND(TL_F, Te, t, a, b, c, d) + #define QUARTER_ROUND_FD(t, a, b, c, d) QUARTER_ROUND(TL_F, Td, t, a, b, c, d) + #ifdef CRYPTOPP_ALLOW_UNALIGNED_DATA_ACCESS + #define TL_F(T, i, x) (*(word32 *)((byte *)T + x*8 + (4-i)%4)) + #define TL_M TL_F + #else + #define TL_F(T, i, x) rotrFixed(T[x], i*8) + #define TL_M(T, i, x) T[i*256 + x] + #endif +#endif + + +#define f2(x) ((x<<1)^(((x>>7)&1)*0x11b)) +#define f4(x) ((x<<2)^(((x>>6)&1)*0x11b)^(((x>>6)&2)*0x11b)) +#define f8(x) ((x<<3)^(((x>>5)&1)*0x11b)^(((x>>5)&2)*0x11b)^(((x>>5)&4)*0x11b)) + +#define f3(x) (f2(x) ^ x) +#define f9(x) (f8(x) ^ x) +#define fb(x) (f8(x) ^ f2(x) ^ x) +#define fd(x) (f8(x) ^ f4(x) ^ x) +#define fe(x) (f8(x) ^ f4(x) ^ f2(x)) + +void Rijndael::Base::FillEncTable() +{ + for (int i=0; i<256; i++) + { + byte x = Se[i]; +#ifdef CRYPTOPP_ALLOW_UNALIGNED_DATA_ACCESS + word32 y = word32(x)<<8 | word32(x)<<16 | word32(f2(x))<<24; + Te[i] = word64(y | f3(x))<<32 | y; +#else + word32 y = f3(x) | word32(x)<<8 | word32(x)<<16 | word32(f2(x))<<24; + for (int j=0; j<4; j++) + { + Te[i+j*256] = y; + y = rotrFixed(y, 8); + } +#endif + } +#if CRYPTOPP_BOOL_SSE2_ASM_AVAILABLE || defined(CRYPTOPP_X64_MASM_AVAILABLE) + Te[256] = Te[257] = 0; +#endif + s_TeFilled = true; +} + +void Rijndael::Base::FillDecTable() +{ + for (int i=0; i<256; i++) + { + byte x = Sd[i]; +#ifdef CRYPTOPP_ALLOW_UNALIGNED_DATA_ACCESS + word32 y = word32(fd(x))<<8 | word32(f9(x))<<16 | word32(fe(x))<<24; + Td[i] = word64(y | fb(x))<<32 | y | x; +#else + word32 y = fb(x) | word32(fd(x))<<8 | word32(f9(x))<<16 | word32(fe(x))<<24;; + for (int j=0; j<4; j++) + { + Td[i+j*256] = y; + y = rotrFixed(y, 8); + } +#endif + } + s_TdFilled = true; +} + +void Rijndael::Base::UncheckedSetKey(const byte *userKey, unsigned int keylen, const NameValuePairs &) +{ + AssertValidKeyLength(keylen); + + m_rounds = keylen/4 + 6; + m_key.New(4*(m_rounds+1)); + + word32 *rk = m_key; + +#if CRYPTOPP_BOOL_AESNI_INTRINSICS_AVAILABLE && (!defined(_MSC_VER) || _MSC_VER >= 1600 || CRYPTOPP_BOOL_X86) + // MSVC 2008 SP1 generates bad code for _mm_extract_epi32() when compiling for X64 + if (HasAESNI()) + { + static const word32 rcLE[] = { + 0x01, 0x02, 0x04, 0x08, + 0x10, 0x20, 0x40, 0x80, + 0x1B, 0x36, /* for 128-bit blocks, Rijndael never uses more than 10 rcon values */ + }; + const word32 *rc = rcLE; + + __m128i temp = _mm_loadu_si128((__m128i *)(userKey+keylen-16)); + memcpy(rk, userKey, keylen); + + while (true) + { + rk[keylen/4] = rk[0] ^ _mm_extract_epi32(_mm_aeskeygenassist_si128(temp, 0), 3) ^ *(rc++); + rk[keylen/4+1] = rk[1] ^ rk[keylen/4]; + rk[keylen/4+2] = rk[2] ^ rk[keylen/4+1]; + rk[keylen/4+3] = rk[3] ^ rk[keylen/4+2]; + + if (rk + keylen/4 + 4 == m_key.end()) + break; + + if (keylen == 24) + { + rk[10] = rk[ 4] ^ rk[ 9]; + rk[11] = rk[ 5] ^ rk[10]; + temp = _mm_insert_epi32(temp, rk[11], 3); + } + else if (keylen == 32) + { + temp = _mm_insert_epi32(temp, rk[11], 3); + rk[12] = rk[ 4] ^ _mm_extract_epi32(_mm_aeskeygenassist_si128(temp, 0), 2); + rk[13] = rk[ 5] ^ rk[12]; + rk[14] = rk[ 6] ^ rk[13]; + rk[15] = rk[ 7] ^ rk[14]; + temp = _mm_insert_epi32(temp, rk[15], 3); + } + else + temp = _mm_insert_epi32(temp, rk[7], 3); + + rk += keylen/4; + } + + if (!IsForwardTransformation()) + { + rk = m_key; + unsigned int i, j; + + std::swap(*(__m128i *)(rk), *(__m128i *)(rk+4*m_rounds)); + + for (i = 4, j = 4*m_rounds-4; i < j; i += 4, j -= 4) + { + temp = _mm_aesimc_si128(*(__m128i *)(rk+i)); + *(__m128i *)(rk+i) = _mm_aesimc_si128(*(__m128i *)(rk+j)); + *(__m128i *)(rk+j) = temp; + } + + *(__m128i *)(rk+i) = _mm_aesimc_si128(*(__m128i *)(rk+i)); + } + + return; + } +#endif + + GetUserKey(BIG_ENDIAN_ORDER, rk, keylen/4, userKey, keylen); + const word32 *rc = rcon; + word32 temp; + + while (true) + { + temp = rk[keylen/4-1]; + word32 x = (word32(Se[GETBYTE(temp, 2)]) << 24) ^ (word32(Se[GETBYTE(temp, 1)]) << 16) ^ (word32(Se[GETBYTE(temp, 0)]) << 8) ^ Se[GETBYTE(temp, 3)]; + rk[keylen/4] = rk[0] ^ x ^ *(rc++); + rk[keylen/4+1] = rk[1] ^ rk[keylen/4]; + rk[keylen/4+2] = rk[2] ^ rk[keylen/4+1]; + rk[keylen/4+3] = rk[3] ^ rk[keylen/4+2]; + + if (rk + keylen/4 + 4 == m_key.end()) + break; + + if (keylen == 24) + { + rk[10] = rk[ 4] ^ rk[ 9]; + rk[11] = rk[ 5] ^ rk[10]; + } + else if (keylen == 32) + { + temp = rk[11]; + rk[12] = rk[ 4] ^ (word32(Se[GETBYTE(temp, 3)]) << 24) ^ (word32(Se[GETBYTE(temp, 2)]) << 16) ^ (word32(Se[GETBYTE(temp, 1)]) << 8) ^ Se[GETBYTE(temp, 0)]; + rk[13] = rk[ 5] ^ rk[12]; + rk[14] = rk[ 6] ^ rk[13]; + rk[15] = rk[ 7] ^ rk[14]; + } + rk += keylen/4; + } + + rk = m_key; + + if (IsForwardTransformation()) + { + if (!s_TeFilled) + FillEncTable(); + + ConditionalByteReverse(BIG_ENDIAN_ORDER, rk, rk, 16); + ConditionalByteReverse(BIG_ENDIAN_ORDER, rk + m_rounds*4, rk + m_rounds*4, 16); + } + else + { + if (!s_TdFilled) + FillDecTable(); + + unsigned int i, j; + +#define InverseMixColumn(x) TL_M(Td, 0, Se[GETBYTE(x, 3)]) ^ TL_M(Td, 1, Se[GETBYTE(x, 2)]) ^ TL_M(Td, 2, Se[GETBYTE(x, 1)]) ^ TL_M(Td, 3, Se[GETBYTE(x, 0)]) + + for (i = 4, j = 4*m_rounds-4; i < j; i += 4, j -= 4) + { + temp = InverseMixColumn(rk[i ]); rk[i ] = InverseMixColumn(rk[j ]); rk[j ] = temp; + temp = InverseMixColumn(rk[i + 1]); rk[i + 1] = InverseMixColumn(rk[j + 1]); rk[j + 1] = temp; + temp = InverseMixColumn(rk[i + 2]); rk[i + 2] = InverseMixColumn(rk[j + 2]); rk[j + 2] = temp; + temp = InverseMixColumn(rk[i + 3]); rk[i + 3] = InverseMixColumn(rk[j + 3]); rk[j + 3] = temp; + } + + rk[i+0] = InverseMixColumn(rk[i+0]); + rk[i+1] = InverseMixColumn(rk[i+1]); + rk[i+2] = InverseMixColumn(rk[i+2]); + rk[i+3] = InverseMixColumn(rk[i+3]); + + temp = ConditionalByteReverse(BIG_ENDIAN_ORDER, rk[0]); rk[0] = ConditionalByteReverse(BIG_ENDIAN_ORDER, rk[4*m_rounds+0]); rk[4*m_rounds+0] = temp; + temp = ConditionalByteReverse(BIG_ENDIAN_ORDER, rk[1]); rk[1] = ConditionalByteReverse(BIG_ENDIAN_ORDER, rk[4*m_rounds+1]); rk[4*m_rounds+1] = temp; + temp = ConditionalByteReverse(BIG_ENDIAN_ORDER, rk[2]); rk[2] = ConditionalByteReverse(BIG_ENDIAN_ORDER, rk[4*m_rounds+2]); rk[4*m_rounds+2] = temp; + temp = ConditionalByteReverse(BIG_ENDIAN_ORDER, rk[3]); rk[3] = ConditionalByteReverse(BIG_ENDIAN_ORDER, rk[4*m_rounds+3]); rk[4*m_rounds+3] = temp; + } + +#if CRYPTOPP_BOOL_AESNI_INTRINSICS_AVAILABLE + if (HasAESNI()) + ConditionalByteReverse(BIG_ENDIAN_ORDER, rk+4, rk+4, (m_rounds-1)*16); +#endif +} + +void Rijndael::Enc::ProcessAndXorBlock(const byte *inBlock, const byte *xorBlock, byte *outBlock) const +{ +#if CRYPTOPP_BOOL_SSE2_ASM_AVAILABLE || defined(CRYPTOPP_X64_MASM_AVAILABLE) || CRYPTOPP_BOOL_AESNI_INTRINSICS_AVAILABLE +#if CRYPTOPP_BOOL_SSE2_ASM_AVAILABLE || defined(CRYPTOPP_X64_MASM_AVAILABLE) + if (HasSSE2()) +#else + if (HasAESNI()) +#endif + { + Rijndael::Enc::AdvancedProcessBlocks(inBlock, xorBlock, outBlock, 16, 0); + return; + } +#endif + + typedef BlockGetAndPut<word32, NativeByteOrder> Block; + + word32 s0, s1, s2, s3, t0, t1, t2, t3; + Block::Get(inBlock)(s0)(s1)(s2)(s3); + + const word32 *rk = m_key; + s0 ^= rk[0]; + s1 ^= rk[1]; + s2 ^= rk[2]; + s3 ^= rk[3]; + t0 = rk[4]; + t1 = rk[5]; + t2 = rk[6]; + t3 = rk[7]; + rk += 8; + + // timing attack countermeasure. see comments at top for more details + const int cacheLineSize = GetCacheLineSize(); + unsigned int i; + word32 u = 0; +#ifdef CRYPTOPP_ALLOW_UNALIGNED_DATA_ACCESS + for (i=0; i<2048; i+=cacheLineSize) +#else + for (i=0; i<1024; i+=cacheLineSize) +#endif + u &= *(const word32 *)(((const byte *)Te)+i); + u &= Te[255]; + s0 |= u; s1 |= u; s2 |= u; s3 |= u; + + QUARTER_ROUND_FE(s3, t0, t1, t2, t3) + QUARTER_ROUND_FE(s2, t3, t0, t1, t2) + QUARTER_ROUND_FE(s1, t2, t3, t0, t1) + QUARTER_ROUND_FE(s0, t1, t2, t3, t0) + + // Nr - 2 full rounds: + unsigned int r = m_rounds/2 - 1; + do + { + s0 = rk[0]; s1 = rk[1]; s2 = rk[2]; s3 = rk[3]; + + QUARTER_ROUND_E(t3, s0, s1, s2, s3) + QUARTER_ROUND_E(t2, s3, s0, s1, s2) + QUARTER_ROUND_E(t1, s2, s3, s0, s1) + QUARTER_ROUND_E(t0, s1, s2, s3, s0) + + t0 = rk[4]; t1 = rk[5]; t2 = rk[6]; t3 = rk[7]; + + QUARTER_ROUND_E(s3, t0, t1, t2, t3) + QUARTER_ROUND_E(s2, t3, t0, t1, t2) + QUARTER_ROUND_E(s1, t2, t3, t0, t1) + QUARTER_ROUND_E(s0, t1, t2, t3, t0) + + rk += 8; + } while (--r); + + word32 tbw[4]; + byte *const tempBlock = (byte *)tbw; + + QUARTER_ROUND_LE(t2, 15, 2, 5, 8) + QUARTER_ROUND_LE(t1, 11, 14, 1, 4) + QUARTER_ROUND_LE(t0, 7, 10, 13, 0) + QUARTER_ROUND_LE(t3, 3, 6, 9, 12) + + Block::Put(xorBlock, outBlock)(tbw[0]^rk[0])(tbw[1]^rk[1])(tbw[2]^rk[2])(tbw[3]^rk[3]); +} + +void Rijndael::Dec::ProcessAndXorBlock(const byte *inBlock, const byte *xorBlock, byte *outBlock) const +{ +#if CRYPTOPP_BOOL_AESNI_INTRINSICS_AVAILABLE + if (HasAESNI()) + { + Rijndael::Dec::AdvancedProcessBlocks(inBlock, xorBlock, outBlock, 16, 0); + return; + } +#endif + + typedef BlockGetAndPut<word32, NativeByteOrder> Block; + + word32 s0, s1, s2, s3, t0, t1, t2, t3; + Block::Get(inBlock)(s0)(s1)(s2)(s3); + + const word32 *rk = m_key; + s0 ^= rk[0]; + s1 ^= rk[1]; + s2 ^= rk[2]; + s3 ^= rk[3]; + t0 = rk[4]; + t1 = rk[5]; + t2 = rk[6]; + t3 = rk[7]; + rk += 8; + + // timing attack countermeasure. see comments at top for more details + const int cacheLineSize = GetCacheLineSize(); + unsigned int i; + word32 u = 0; +#ifdef CRYPTOPP_ALLOW_UNALIGNED_DATA_ACCESS + for (i=0; i<2048; i+=cacheLineSize) +#else + for (i=0; i<1024; i+=cacheLineSize) +#endif + u &= *(const word32 *)(((const byte *)Td)+i); + u &= Td[255]; + s0 |= u; s1 |= u; s2 |= u; s3 |= u; + + QUARTER_ROUND_FD(s3, t2, t1, t0, t3) + QUARTER_ROUND_FD(s2, t1, t0, t3, t2) + QUARTER_ROUND_FD(s1, t0, t3, t2, t1) + QUARTER_ROUND_FD(s0, t3, t2, t1, t0) + + // Nr - 2 full rounds: + unsigned int r = m_rounds/2 - 1; + do + { + s0 = rk[0]; s1 = rk[1]; s2 = rk[2]; s3 = rk[3]; + + QUARTER_ROUND_D(t3, s2, s1, s0, s3) + QUARTER_ROUND_D(t2, s1, s0, s3, s2) + QUARTER_ROUND_D(t1, s0, s3, s2, s1) + QUARTER_ROUND_D(t0, s3, s2, s1, s0) + + t0 = rk[4]; t1 = rk[5]; t2 = rk[6]; t3 = rk[7]; + + QUARTER_ROUND_D(s3, t2, t1, t0, t3) + QUARTER_ROUND_D(s2, t1, t0, t3, t2) + QUARTER_ROUND_D(s1, t0, t3, t2, t1) + QUARTER_ROUND_D(s0, t3, t2, t1, t0) + + rk += 8; + } while (--r); + +#ifndef CRYPTOPP_ALLOW_UNALIGNED_DATA_ACCESS + // timing attack countermeasure. see comments at top for more details + // If CRYPTOPP_ALLOW_UNALIGNED_DATA_ACCESS is defined, + // QUARTER_ROUND_LD will use Td, which is already preloaded. + u = 0; + for (i=0; i<256; i+=cacheLineSize) + u &= *(const word32 *)(Sd+i); + u &= *(const word32 *)(Sd+252); + t0 |= u; t1 |= u; t2 |= u; t3 |= u; +#endif + + word32 tbw[4]; + byte *const tempBlock = (byte *)tbw; + + QUARTER_ROUND_LD(t2, 7, 2, 13, 8) + QUARTER_ROUND_LD(t1, 3, 14, 9, 4) + QUARTER_ROUND_LD(t0, 15, 10, 5, 0) + QUARTER_ROUND_LD(t3, 11, 6, 1, 12) + + Block::Put(xorBlock, outBlock)(tbw[0]^rk[0])(tbw[1]^rk[1])(tbw[2]^rk[2])(tbw[3]^rk[3]); +} + +// ************************* Assembly Code ************************************ + +#pragma warning(disable: 4731) // frame pointer register 'ebp' modified by inline assembly code + +#endif // #ifndef CRYPTOPP_GENERATE_X64_MASM + +#if CRYPTOPP_BOOL_SSE2_ASM_AVAILABLE + +CRYPTOPP_NAKED void CRYPTOPP_FASTCALL Rijndael_Enc_AdvancedProcessBlocks(void *locals, const word32 *k) +{ +#if CRYPTOPP_BOOL_X86 + +#define L_REG esp +#define L_INDEX(i) (L_REG+768+i) +#define L_INXORBLOCKS L_INBLOCKS+4 +#define L_OUTXORBLOCKS L_INBLOCKS+8 +#define L_OUTBLOCKS L_INBLOCKS+12 +#define L_INCREMENTS L_INDEX(16*15) +#define L_SP L_INDEX(16*16) +#define L_LENGTH L_INDEX(16*16+4) +#define L_KEYS_BEGIN L_INDEX(16*16+8) + +#define MOVD movd +#define MM(i) mm##i + +#define MXOR(a,b,c) \ + AS2( movzx esi, b)\ + AS2( movd mm7, DWORD PTR [AS_REG_7+8*WORD_REG(si)+MAP0TO4(c)])\ + AS2( pxor MM(a), mm7)\ + +#define MMOV(a,b,c) \ + AS2( movzx esi, b)\ + AS2( movd MM(a), DWORD PTR [AS_REG_7+8*WORD_REG(si)+MAP0TO4(c)])\ + +#else + +#define L_REG r8 +#define L_INDEX(i) (L_REG+i) +#define L_INXORBLOCKS L_INBLOCKS+8 +#define L_OUTXORBLOCKS L_INBLOCKS+16 +#define L_OUTBLOCKS L_INBLOCKS+24 +#define L_INCREMENTS L_INDEX(16*16) +#define L_LENGTH L_INDEX(16*18+8) +#define L_KEYS_BEGIN L_INDEX(16*19) + +#define MOVD mov +#define MM_0 r9d +#define MM_1 r12d +#ifdef __GNUC__ +#define MM_2 r11d +#else +#define MM_2 r10d +#endif +#define MM(i) MM_##i + +#define MXOR(a,b,c) \ + AS2( movzx esi, b)\ + AS2( xor MM(a), DWORD PTR [AS_REG_7+8*WORD_REG(si)+MAP0TO4(c)])\ + +#define MMOV(a,b,c) \ + AS2( movzx esi, b)\ + AS2( mov MM(a), DWORD PTR [AS_REG_7+8*WORD_REG(si)+MAP0TO4(c)])\ + +#endif + +#define L_SUBKEYS L_INDEX(0) +#define L_SAVED_X L_SUBKEYS +#define L_KEY12 L_INDEX(16*12) +#define L_LASTROUND L_INDEX(16*13) +#define L_INBLOCKS L_INDEX(16*14) +#define MAP0TO4(i) (ASM_MOD(i+3,4)+1) + +#define XOR(a,b,c) \ + AS2( movzx esi, b)\ + AS2( xor a, DWORD PTR [AS_REG_7+8*WORD_REG(si)+MAP0TO4(c)])\ + +#define MOV(a,b,c) \ + AS2( movzx esi, b)\ + AS2( mov a, DWORD PTR [AS_REG_7+8*WORD_REG(si)+MAP0TO4(c)])\ + +#ifdef CRYPTOPP_GENERATE_X64_MASM + ALIGN 8 + Rijndael_Enc_AdvancedProcessBlocks PROC FRAME + rex_push_reg rsi + push_reg rdi + push_reg rbx + push_reg r12 + .endprolog + mov L_REG, rcx + mov AS_REG_7, ?Te@rdtable@CryptoPP@@3PA_KA + mov edi, DWORD PTR [?g_cacheLineSize@CryptoPP@@3IA] +#elif defined(__GNUC__) + __asm__ __volatile__ + ( + ".intel_syntax noprefix;" + #if CRYPTOPP_BOOL_X64 + AS2( mov L_REG, rcx) + #endif + AS_PUSH_IF86(bx) + AS_PUSH_IF86(bp) + AS2( mov AS_REG_7, WORD_REG(si)) +#else + AS_PUSH_IF86(si) + AS_PUSH_IF86(di) + AS_PUSH_IF86(bx) + AS_PUSH_IF86(bp) + AS2( lea AS_REG_7, [Te]) + AS2( mov edi, [g_cacheLineSize]) +#endif + +#if CRYPTOPP_BOOL_X86 + AS2( mov [ecx+16*12+16*4], esp) // save esp to L_SP + AS2( lea esp, [ecx-768]) +#endif + + // copy subkeys to stack + AS2( mov WORD_REG(si), [L_KEYS_BEGIN]) + AS2( mov WORD_REG(ax), 16) + AS2( and WORD_REG(ax), WORD_REG(si)) + AS2( movdqa xmm3, XMMWORD_PTR [WORD_REG(dx)+16+WORD_REG(ax)]) // subkey 1 (non-counter) or 2 (counter) + AS2( movdqa [L_KEY12], xmm3) + AS2( lea WORD_REG(ax), [WORD_REG(dx)+WORD_REG(ax)+2*16]) + AS2( sub WORD_REG(ax), WORD_REG(si)) + ASL(0) + AS2( movdqa xmm0, [WORD_REG(ax)+WORD_REG(si)]) + AS2( movdqa XMMWORD_PTR [L_SUBKEYS+WORD_REG(si)], xmm0) + AS2( add WORD_REG(si), 16) + AS2( cmp WORD_REG(si), 16*12) + ASJ( jl, 0, b) + + // read subkeys 0, 1 and last + AS2( movdqa xmm4, [WORD_REG(ax)+WORD_REG(si)]) // last subkey + AS2( movdqa xmm1, [WORD_REG(dx)]) // subkey 0 + AS2( MOVD MM(1), [WORD_REG(dx)+4*4]) // 0,1,2,3 + AS2( mov ebx, [WORD_REG(dx)+5*4]) // 4,5,6,7 + AS2( mov ecx, [WORD_REG(dx)+6*4]) // 8,9,10,11 + AS2( mov edx, [WORD_REG(dx)+7*4]) // 12,13,14,15 + + // load table into cache + AS2( xor WORD_REG(ax), WORD_REG(ax)) + ASL(9) + AS2( mov esi, [AS_REG_7+WORD_REG(ax)]) + AS2( add WORD_REG(ax), WORD_REG(di)) + AS2( mov esi, [AS_REG_7+WORD_REG(ax)]) + AS2( add WORD_REG(ax), WORD_REG(di)) + AS2( mov esi, [AS_REG_7+WORD_REG(ax)]) + AS2( add WORD_REG(ax), WORD_REG(di)) + AS2( mov esi, [AS_REG_7+WORD_REG(ax)]) + AS2( add WORD_REG(ax), WORD_REG(di)) + AS2( cmp WORD_REG(ax), 2048) + ASJ( jl, 9, b) + AS1( lfence) + + AS2( test DWORD PTR [L_LENGTH], 1) + ASJ( jz, 8, f) + + // counter mode one-time setup + AS2( mov WORD_REG(si), [L_INBLOCKS]) + AS2( movdqu xmm2, [WORD_REG(si)]) // counter + AS2( pxor xmm2, xmm1) + AS2( psrldq xmm1, 14) + AS2( movd eax, xmm1) + AS2( mov al, BYTE PTR [WORD_REG(si)+15]) + AS2( MOVD MM(2), eax) +#if CRYPTOPP_BOOL_X86 + AS2( mov eax, 1) + AS2( movd mm3, eax) +#endif + + // partial first round, in: xmm2(15,14,13,12;11,10,9,8;7,6,5,4;3,2,1,0), out: mm1, ebx, ecx, edx + AS2( movd eax, xmm2) + AS2( psrldq xmm2, 4) + AS2( movd edi, xmm2) + AS2( psrldq xmm2, 4) + MXOR( 1, al, 0) // 0 + XOR( edx, ah, 1) // 1 + AS2( shr eax, 16) + XOR( ecx, al, 2) // 2 + XOR( ebx, ah, 3) // 3 + AS2( mov eax, edi) + AS2( movd edi, xmm2) + AS2( psrldq xmm2, 4) + XOR( ebx, al, 0) // 4 + MXOR( 1, ah, 1) // 5 + AS2( shr eax, 16) + XOR( edx, al, 2) // 6 + XOR( ecx, ah, 3) // 7 + AS2( mov eax, edi) + AS2( movd edi, xmm2) + XOR( ecx, al, 0) // 8 + XOR( ebx, ah, 1) // 9 + AS2( shr eax, 16) + MXOR( 1, al, 2) // 10 + XOR( edx, ah, 3) // 11 + AS2( mov eax, edi) + XOR( edx, al, 0) // 12 + XOR( ecx, ah, 1) // 13 + AS2( shr eax, 16) + XOR( ebx, al, 2) // 14 + AS2( psrldq xmm2, 3) + + // partial second round, in: ebx(4,5,6,7), ecx(8,9,10,11), edx(12,13,14,15), out: eax, ebx, edi, mm0 + AS2( mov eax, [L_KEY12+0*4]) + AS2( mov edi, [L_KEY12+2*4]) + AS2( MOVD MM(0), [L_KEY12+3*4]) + MXOR( 0, cl, 3) /* 11 */ + XOR( edi, bl, 3) /* 7 */ + MXOR( 0, bh, 2) /* 6 */ + AS2( shr ebx, 16) /* 4,5 */ + XOR( eax, bl, 1) /* 5 */ + MOV( ebx, bh, 0) /* 4 */ + AS2( xor ebx, [L_KEY12+1*4]) + XOR( eax, ch, 2) /* 10 */ + AS2( shr ecx, 16) /* 8,9 */ + XOR( eax, dl, 3) /* 15 */ + XOR( ebx, dh, 2) /* 14 */ + AS2( shr edx, 16) /* 12,13 */ + XOR( edi, ch, 0) /* 8 */ + XOR( ebx, cl, 1) /* 9 */ + XOR( edi, dl, 1) /* 13 */ + MXOR( 0, dh, 0) /* 12 */ + + AS2( movd ecx, xmm2) + AS2( MOVD edx, MM(1)) + AS2( MOVD [L_SAVED_X+3*4], MM(0)) + AS2( mov [L_SAVED_X+0*4], eax) + AS2( mov [L_SAVED_X+1*4], ebx) + AS2( mov [L_SAVED_X+2*4], edi) + ASJ( jmp, 5, f) + + ASL(3) + // non-counter mode per-block setup + AS2( MOVD MM(1), [L_KEY12+0*4]) // 0,1,2,3 + AS2( mov ebx, [L_KEY12+1*4]) // 4,5,6,7 + AS2( mov ecx, [L_KEY12+2*4]) // 8,9,10,11 + AS2( mov edx, [L_KEY12+3*4]) // 12,13,14,15 + ASL(8) + AS2( mov WORD_REG(ax), [L_INBLOCKS]) + AS2( movdqu xmm2, [WORD_REG(ax)]) + AS2( mov WORD_REG(si), [L_INXORBLOCKS]) + AS2( movdqu xmm5, [WORD_REG(si)]) + AS2( pxor xmm2, xmm1) + AS2( pxor xmm2, xmm5) + + // first round, in: xmm2(15,14,13,12;11,10,9,8;7,6,5,4;3,2,1,0), out: eax, ebx, ecx, edx + AS2( movd eax, xmm2) + AS2( psrldq xmm2, 4) + AS2( movd edi, xmm2) + AS2( psrldq xmm2, 4) + MXOR( 1, al, 0) // 0 + XOR( edx, ah, 1) // 1 + AS2( shr eax, 16) + XOR( ecx, al, 2) // 2 + XOR( ebx, ah, 3) // 3 + AS2( mov eax, edi) + AS2( movd edi, xmm2) + AS2( psrldq xmm2, 4) + XOR( ebx, al, 0) // 4 + MXOR( 1, ah, 1) // 5 + AS2( shr eax, 16) + XOR( edx, al, 2) // 6 + XOR( ecx, ah, 3) // 7 + AS2( mov eax, edi) + AS2( movd edi, xmm2) + XOR( ecx, al, 0) // 8 + XOR( ebx, ah, 1) // 9 + AS2( shr eax, 16) + MXOR( 1, al, 2) // 10 + XOR( edx, ah, 3) // 11 + AS2( mov eax, edi) + XOR( edx, al, 0) // 12 + XOR( ecx, ah, 1) // 13 + AS2( shr eax, 16) + XOR( ebx, al, 2) // 14 + MXOR( 1, ah, 3) // 15 + AS2( MOVD eax, MM(1)) + + AS2( add L_REG, [L_KEYS_BEGIN]) + AS2( add L_REG, 4*16) + ASJ( jmp, 2, f) + + ASL(1) + // counter-mode per-block setup + AS2( MOVD ecx, MM(2)) + AS2( MOVD edx, MM(1)) + AS2( mov eax, [L_SAVED_X+0*4]) + AS2( mov ebx, [L_SAVED_X+1*4]) + AS2( xor cl, ch) + AS2( and WORD_REG(cx), 255) + ASL(5) +#if CRYPTOPP_BOOL_X86 + AS2( paddb MM(2), mm3) +#else + AS2( add MM(2), 1) +#endif + // remaining part of second round, in: edx(previous round),esi(keyed counter byte) eax,ebx,[L_SAVED_X+2*4],[L_SAVED_X+3*4], out: eax,ebx,ecx,edx + AS2( xor edx, DWORD PTR [AS_REG_7+WORD_REG(cx)*8+3]) + XOR( ebx, dl, 3) + MOV( ecx, dh, 2) + AS2( shr edx, 16) + AS2( xor ecx, [L_SAVED_X+2*4]) + XOR( eax, dh, 0) + MOV( edx, dl, 1) + AS2( xor edx, [L_SAVED_X+3*4]) + + AS2( add L_REG, [L_KEYS_BEGIN]) + AS2( add L_REG, 3*16) + ASJ( jmp, 4, f) + +// in: eax(0,1,2,3), ebx(4,5,6,7), ecx(8,9,10,11), edx(12,13,14,15) +// out: eax, ebx, edi, mm0 +#define ROUND() \ + MXOR( 0, cl, 3) /* 11 */\ + AS2( mov cl, al) /* 8,9,10,3 */\ + XOR( edi, ah, 2) /* 2 */\ + AS2( shr eax, 16) /* 0,1 */\ + XOR( edi, bl, 3) /* 7 */\ + MXOR( 0, bh, 2) /* 6 */\ + AS2( shr ebx, 16) /* 4,5 */\ + MXOR( 0, al, 1) /* 1 */\ + MOV( eax, ah, 0) /* 0 */\ + XOR( eax, bl, 1) /* 5 */\ + MOV( ebx, bh, 0) /* 4 */\ + XOR( eax, ch, 2) /* 10 */\ + XOR( ebx, cl, 3) /* 3 */\ + AS2( shr ecx, 16) /* 8,9 */\ + XOR( eax, dl, 3) /* 15 */\ + XOR( ebx, dh, 2) /* 14 */\ + AS2( shr edx, 16) /* 12,13 */\ + XOR( edi, ch, 0) /* 8 */\ + XOR( ebx, cl, 1) /* 9 */\ + XOR( edi, dl, 1) /* 13 */\ + MXOR( 0, dh, 0) /* 12 */\ + + ASL(2) // 2-round loop + AS2( MOVD MM(0), [L_SUBKEYS-4*16+3*4]) + AS2( mov edi, [L_SUBKEYS-4*16+2*4]) + ROUND() + AS2( mov ecx, edi) + AS2( xor eax, [L_SUBKEYS-4*16+0*4]) + AS2( xor ebx, [L_SUBKEYS-4*16+1*4]) + AS2( MOVD edx, MM(0)) + + ASL(4) + AS2( MOVD MM(0), [L_SUBKEYS-4*16+7*4]) + AS2( mov edi, [L_SUBKEYS-4*16+6*4]) + ROUND() + AS2( mov ecx, edi) + AS2( xor eax, [L_SUBKEYS-4*16+4*4]) + AS2( xor ebx, [L_SUBKEYS-4*16+5*4]) + AS2( MOVD edx, MM(0)) + + AS2( add L_REG, 32) + AS2( test L_REG, 255) + ASJ( jnz, 2, b) + AS2( sub L_REG, 16*16) + +#define LAST(a, b, c) \ + AS2( movzx esi, a )\ + AS2( movzx edi, BYTE PTR [AS_REG_7+WORD_REG(si)*8+1] )\ + AS2( movzx esi, b )\ + AS2( xor edi, DWORD PTR [AS_REG_7+WORD_REG(si)*8+0] )\ + AS2( mov WORD PTR [L_LASTROUND+c], di )\ + + // last round + LAST(ch, dl, 2) + LAST(dh, al, 6) + AS2( shr edx, 16) + LAST(ah, bl, 10) + AS2( shr eax, 16) + LAST(bh, cl, 14) + AS2( shr ebx, 16) + LAST(dh, al, 12) + AS2( shr ecx, 16) + LAST(ah, bl, 0) + LAST(bh, cl, 4) + LAST(ch, dl, 8) + + AS2( mov WORD_REG(ax), [L_OUTXORBLOCKS]) + AS2( mov WORD_REG(bx), [L_OUTBLOCKS]) + + AS2( mov WORD_REG(cx), [L_LENGTH]) + AS2( sub WORD_REG(cx), 16) + + AS2( movdqu xmm2, [WORD_REG(ax)]) + AS2( pxor xmm2, xmm4) + +#if CRYPTOPP_BOOL_X86 + AS2( movdqa xmm0, [L_INCREMENTS]) + AS2( paddd xmm0, [L_INBLOCKS]) + AS2( movdqa [L_INBLOCKS], xmm0) +#else + AS2( movdqa xmm0, [L_INCREMENTS+16]) + AS2( paddq xmm0, [L_INBLOCKS+16]) + AS2( movdqa [L_INBLOCKS+16], xmm0) +#endif + + AS2( pxor xmm2, [L_LASTROUND]) + AS2( movdqu [WORD_REG(bx)], xmm2) + + ASJ( jle, 7, f) + AS2( mov [L_LENGTH], WORD_REG(cx)) + AS2( test WORD_REG(cx), 1) + ASJ( jnz, 1, b) +#if CRYPTOPP_BOOL_X64 + AS2( movdqa xmm0, [L_INCREMENTS]) + AS2( paddq xmm0, [L_INBLOCKS]) + AS2( movdqa [L_INBLOCKS], xmm0) +#endif + ASJ( jmp, 3, b) + + ASL(7) + // erase keys on stack + AS2( xorps xmm0, xmm0) + AS2( lea WORD_REG(ax), [L_SUBKEYS+7*16]) + AS2( movaps [WORD_REG(ax)-7*16], xmm0) + AS2( movaps [WORD_REG(ax)-6*16], xmm0) + AS2( movaps [WORD_REG(ax)-5*16], xmm0) + AS2( movaps [WORD_REG(ax)-4*16], xmm0) + AS2( movaps [WORD_REG(ax)-3*16], xmm0) + AS2( movaps [WORD_REG(ax)-2*16], xmm0) + AS2( movaps [WORD_REG(ax)-1*16], xmm0) + AS2( movaps [WORD_REG(ax)+0*16], xmm0) + AS2( movaps [WORD_REG(ax)+1*16], xmm0) + AS2( movaps [WORD_REG(ax)+2*16], xmm0) + AS2( movaps [WORD_REG(ax)+3*16], xmm0) + AS2( movaps [WORD_REG(ax)+4*16], xmm0) + AS2( movaps [WORD_REG(ax)+5*16], xmm0) + AS2( movaps [WORD_REG(ax)+6*16], xmm0) +#if CRYPTOPP_BOOL_X86 + AS2( mov esp, [L_SP]) + AS1( emms) +#endif + AS_POP_IF86(bp) + AS_POP_IF86(bx) +#if defined(_MSC_VER) && CRYPTOPP_BOOL_X86 + AS_POP_IF86(di) + AS_POP_IF86(si) + AS1(ret) +#endif +#ifdef CRYPTOPP_GENERATE_X64_MASM + pop r12 + pop rbx + pop rdi + pop rsi + ret + Rijndael_Enc_AdvancedProcessBlocks ENDP +#endif +#ifdef __GNUC__ + ".att_syntax prefix;" + : + : "c" (locals), "d" (k), "S" (Te), "D" (g_cacheLineSize) + : "memory", "cc", "%eax" + #if CRYPTOPP_BOOL_X64 + , "%rbx", "%r8", "%r9", "%r10", "%r11", "%r12" + #endif + ); +#endif +} + +#endif + +#ifndef CRYPTOPP_GENERATE_X64_MASM + +#ifdef CRYPTOPP_X64_MASM_AVAILABLE +extern "C" { +void Rijndael_Enc_AdvancedProcessBlocks(void *locals, const word32 *k); +} +#endif + +#if CRYPTOPP_BOOL_X64 || CRYPTOPP_BOOL_X86 + +static inline bool AliasedWithTable(const byte *begin, const byte *end) +{ + size_t s0 = size_t(begin)%4096, s1 = size_t(end)%4096; + size_t t0 = size_t(Te)%4096, t1 = (size_t(Te)+sizeof(Te))%4096; + if (t1 > t0) + return (s0 >= t0 && s0 < t1) || (s1 > t0 && s1 <= t1); + else + return (s0 < t1 || s1 <= t1) || (s0 >= t0 || s1 > t0); +} + +#if CRYPTOPP_BOOL_AESNI_INTRINSICS_AVAILABLE + +inline void AESNI_Enc_Block(__m128i &block, const __m128i *subkeys, unsigned int rounds) +{ + block = _mm_xor_si128(block, subkeys[0]); + for (unsigned int i=1; i<rounds-1; i+=2) + { + block = _mm_aesenc_si128(block, subkeys[i]); + block = _mm_aesenc_si128(block, subkeys[i+1]); + } + block = _mm_aesenc_si128(block, subkeys[rounds-1]); + block = _mm_aesenclast_si128(block, subkeys[rounds]); +} + +inline void AESNI_Enc_4_Blocks(__m128i &block0, __m128i &block1, __m128i &block2, __m128i &block3, const __m128i *subkeys, unsigned int rounds) +{ + __m128i rk = subkeys[0]; + block0 = _mm_xor_si128(block0, rk); + block1 = _mm_xor_si128(block1, rk); + block2 = _mm_xor_si128(block2, rk); + block3 = _mm_xor_si128(block3, rk); + for (unsigned int i=1; i<rounds; i++) + { + rk = subkeys[i]; + block0 = _mm_aesenc_si128(block0, rk); + block1 = _mm_aesenc_si128(block1, rk); + block2 = _mm_aesenc_si128(block2, rk); + block3 = _mm_aesenc_si128(block3, rk); + } + rk = subkeys[rounds]; + block0 = _mm_aesenclast_si128(block0, rk); + block1 = _mm_aesenclast_si128(block1, rk); + block2 = _mm_aesenclast_si128(block2, rk); + block3 = _mm_aesenclast_si128(block3, rk); +} + +inline void AESNI_Dec_Block(__m128i &block, const __m128i *subkeys, unsigned int rounds) +{ + block = _mm_xor_si128(block, subkeys[0]); + for (unsigned int i=1; i<rounds-1; i+=2) + { + block = _mm_aesdec_si128(block, subkeys[i]); + block = _mm_aesdec_si128(block, subkeys[i+1]); + } + block = _mm_aesdec_si128(block, subkeys[rounds-1]); + block = _mm_aesdeclast_si128(block, subkeys[rounds]); +} + +inline void AESNI_Dec_4_Blocks(__m128i &block0, __m128i &block1, __m128i &block2, __m128i &block3, const __m128i *subkeys, unsigned int rounds) +{ + __m128i rk = subkeys[0]; + block0 = _mm_xor_si128(block0, rk); + block1 = _mm_xor_si128(block1, rk); + block2 = _mm_xor_si128(block2, rk); + block3 = _mm_xor_si128(block3, rk); + for (unsigned int i=1; i<rounds; i++) + { + rk = subkeys[i]; + block0 = _mm_aesdec_si128(block0, rk); + block1 = _mm_aesdec_si128(block1, rk); + block2 = _mm_aesdec_si128(block2, rk); + block3 = _mm_aesdec_si128(block3, rk); + } + rk = subkeys[rounds]; + block0 = _mm_aesdeclast_si128(block0, rk); + block1 = _mm_aesdeclast_si128(block1, rk); + block2 = _mm_aesdeclast_si128(block2, rk); + block3 = _mm_aesdeclast_si128(block3, rk); +} + +static CRYPTOPP_ALIGN_DATA(16) const word32 s_one[] = {0, 0, 0, 1<<24}; + +template <typename F1, typename F4> +inline size_t AESNI_AdvancedProcessBlocks(F1 func1, F4 func4, const __m128i *subkeys, unsigned int rounds, const byte *inBlocks, const byte *xorBlocks, byte *outBlocks, size_t length, word32 flags) +{ + size_t blockSize = 16; + size_t inIncrement = (flags & (BlockTransformation::BT_InBlockIsCounter|BlockTransformation::BT_DontIncrementInOutPointers)) ? 0 : blockSize; + size_t xorIncrement = xorBlocks ? blockSize : 0; + size_t outIncrement = (flags & BlockTransformation::BT_DontIncrementInOutPointers) ? 0 : blockSize; + + if (flags & BlockTransformation::BT_ReverseDirection) + { + assert(length % blockSize == 0); + inBlocks += length - blockSize; + xorBlocks += length - blockSize; + outBlocks += length - blockSize; + inIncrement = 0-inIncrement; + xorIncrement = 0-xorIncrement; + outIncrement = 0-outIncrement; + } + + if (flags & BlockTransformation::BT_AllowParallel) + { + while (length >= 4*blockSize) + { + __m128i block0 = _mm_loadu_si128((const __m128i *)inBlocks), block1, block2, block3; + if (flags & BlockTransformation::BT_InBlockIsCounter) + { + const __m128i be1 = *(const __m128i *)s_one; + block1 = _mm_add_epi32(block0, be1); + block2 = _mm_add_epi32(block1, be1); + block3 = _mm_add_epi32(block2, be1); + _mm_storeu_si128((__m128i *)inBlocks, _mm_add_epi32(block3, be1)); + } + else + { + inBlocks += inIncrement; + block1 = _mm_loadu_si128((const __m128i *)inBlocks); + inBlocks += inIncrement; + block2 = _mm_loadu_si128((const __m128i *)inBlocks); + inBlocks += inIncrement; + block3 = _mm_loadu_si128((const __m128i *)inBlocks); + inBlocks += inIncrement; + } + + if (flags & BlockTransformation::BT_XorInput) + { + block0 = _mm_xor_si128(block0, _mm_loadu_si128((const __m128i *)xorBlocks)); + xorBlocks += xorIncrement; + block1 = _mm_xor_si128(block1, _mm_loadu_si128((const __m128i *)xorBlocks)); + xorBlocks += xorIncrement; + block2 = _mm_xor_si128(block2, _mm_loadu_si128((const __m128i *)xorBlocks)); + xorBlocks += xorIncrement; + block3 = _mm_xor_si128(block3, _mm_loadu_si128((const __m128i *)xorBlocks)); + xorBlocks += xorIncrement; + } + + func4(block0, block1, block2, block3, subkeys, rounds); + + if (xorBlocks && !(flags & BlockTransformation::BT_XorInput)) + { + block0 = _mm_xor_si128(block0, _mm_loadu_si128((const __m128i *)xorBlocks)); + xorBlocks += xorIncrement; + block1 = _mm_xor_si128(block1, _mm_loadu_si128((const __m128i *)xorBlocks)); + xorBlocks += xorIncrement; + block2 = _mm_xor_si128(block2, _mm_loadu_si128((const __m128i *)xorBlocks)); + xorBlocks += xorIncrement; + block3 = _mm_xor_si128(block3, _mm_loadu_si128((const __m128i *)xorBlocks)); + xorBlocks += xorIncrement; + } + + _mm_storeu_si128((__m128i *)outBlocks, block0); + outBlocks += outIncrement; + _mm_storeu_si128((__m128i *)outBlocks, block1); + outBlocks += outIncrement; + _mm_storeu_si128((__m128i *)outBlocks, block2); + outBlocks += outIncrement; + _mm_storeu_si128((__m128i *)outBlocks, block3); + outBlocks += outIncrement; + + length -= 4*blockSize; + } + } + + while (length >= blockSize) + { + __m128i block = _mm_loadu_si128((const __m128i *)inBlocks); + + if (flags & BlockTransformation::BT_XorInput) + block = _mm_xor_si128(block, _mm_loadu_si128((const __m128i *)xorBlocks)); + + if (flags & BlockTransformation::BT_InBlockIsCounter) + const_cast<byte *>(inBlocks)[15]++; + + func1(block, subkeys, rounds); + + if (xorBlocks && !(flags & BlockTransformation::BT_XorInput)) + block = _mm_xor_si128(block, _mm_loadu_si128((const __m128i *)xorBlocks)); + + _mm_storeu_si128((__m128i *)outBlocks, block); + + inBlocks += inIncrement; + outBlocks += outIncrement; + xorBlocks += xorIncrement; + length -= blockSize; + } + + return length; +} +#endif + +size_t Rijndael::Enc::AdvancedProcessBlocks(const byte *inBlocks, const byte *xorBlocks, byte *outBlocks, size_t length, word32 flags) const +{ +#if CRYPTOPP_BOOL_AESNI_INTRINSICS_AVAILABLE + if (HasAESNI()) + return AESNI_AdvancedProcessBlocks(AESNI_Enc_Block, AESNI_Enc_4_Blocks, (const __m128i *)m_key.begin(), m_rounds, inBlocks, xorBlocks, outBlocks, length, flags); +#endif + +#if CRYPTOPP_BOOL_SSE2_ASM_AVAILABLE || defined(CRYPTOPP_X64_MASM_AVAILABLE) + if (HasSSE2()) + { + if (length < BLOCKSIZE) + return length; + + struct Locals + { + word32 subkeys[4*12], workspace[8]; + const byte *inBlocks, *inXorBlocks, *outXorBlocks; + byte *outBlocks; + size_t inIncrement, inXorIncrement, outXorIncrement, outIncrement; + size_t regSpill, lengthAndCounterFlag, keysBegin; + }; + + size_t increment = BLOCKSIZE; + const byte* zeros = (byte *)(Te+256); + byte *space; + + do { + space = (byte *)alloca(255+sizeof(Locals)); + space += (256-(size_t)space%256)%256; + } + while (AliasedWithTable(space, space+sizeof(Locals))); + + if (flags & BT_ReverseDirection) + { + assert(length % BLOCKSIZE == 0); + inBlocks += length - BLOCKSIZE; + xorBlocks += length - BLOCKSIZE; + outBlocks += length - BLOCKSIZE; + increment = 0-increment; + } + + Locals &locals = *(Locals *)space; + + locals.inBlocks = inBlocks; + locals.inXorBlocks = (flags & BT_XorInput) && xorBlocks ? xorBlocks : zeros; + locals.outXorBlocks = (flags & BT_XorInput) || !xorBlocks ? zeros : xorBlocks; + locals.outBlocks = outBlocks; + + locals.inIncrement = (flags & BT_DontIncrementInOutPointers) ? 0 : increment; + locals.inXorIncrement = (flags & BT_XorInput) && xorBlocks ? increment : 0; + locals.outXorIncrement = (flags & BT_XorInput) || !xorBlocks ? 0 : increment; + locals.outIncrement = (flags & BT_DontIncrementInOutPointers) ? 0 : increment; + + locals.lengthAndCounterFlag = length - (length%16) - bool(flags & BT_InBlockIsCounter); + int keysToCopy = m_rounds - (flags & BT_InBlockIsCounter ? 3 : 2); + locals.keysBegin = (12-keysToCopy)*16; + + Rijndael_Enc_AdvancedProcessBlocks(&locals, m_key); + return length % BLOCKSIZE; + } +#endif + + return BlockTransformation::AdvancedProcessBlocks(inBlocks, xorBlocks, outBlocks, length, flags); +} + +#endif + +#if CRYPTOPP_BOOL_AESNI_INTRINSICS_AVAILABLE + +size_t Rijndael::Dec::AdvancedProcessBlocks(const byte *inBlocks, const byte *xorBlocks, byte *outBlocks, size_t length, word32 flags) const +{ + if (HasAESNI()) + return AESNI_AdvancedProcessBlocks(AESNI_Dec_Block, AESNI_Dec_4_Blocks, (const __m128i *)m_key.begin(), m_rounds, inBlocks, xorBlocks, outBlocks, length, flags); + + return BlockTransformation::AdvancedProcessBlocks(inBlocks, xorBlocks, outBlocks, length, flags); +} + +#endif // #if CRYPTOPP_BOOL_AESNI_INTRINSICS_AVAILABLE + +NAMESPACE_END + +#endif +#endif |