diff options
Diffstat (limited to 'cryptopp562/nbtheory.h')
-rw-r--r-- | cryptopp562/nbtheory.h | 131 |
1 files changed, 0 insertions, 131 deletions
diff --git a/cryptopp562/nbtheory.h b/cryptopp562/nbtheory.h deleted file mode 100644 index 6364792..0000000 --- a/cryptopp562/nbtheory.h +++ /dev/null @@ -1,131 +0,0 @@ -// nbtheory.h - written and placed in the public domain by Wei Dai - -#ifndef CRYPTOPP_NBTHEORY_H -#define CRYPTOPP_NBTHEORY_H - -#include "integer.h" -#include "algparam.h" - -NAMESPACE_BEGIN(CryptoPP) - -// obtain pointer to small prime table and get its size -CRYPTOPP_DLL const word16 * CRYPTOPP_API GetPrimeTable(unsigned int &size); - -// ************ primality testing **************** - -// generate a provable prime -CRYPTOPP_DLL Integer CRYPTOPP_API MaurerProvablePrime(RandomNumberGenerator &rng, unsigned int bits); -CRYPTOPP_DLL Integer CRYPTOPP_API MihailescuProvablePrime(RandomNumberGenerator &rng, unsigned int bits); - -CRYPTOPP_DLL bool CRYPTOPP_API IsSmallPrime(const Integer &p); - -// returns true if p is divisible by some prime less than bound -// bound not be greater than the largest entry in the prime table -CRYPTOPP_DLL bool CRYPTOPP_API TrialDivision(const Integer &p, unsigned bound); - -// returns true if p is NOT divisible by small primes -CRYPTOPP_DLL bool CRYPTOPP_API SmallDivisorsTest(const Integer &p); - -// These is no reason to use these two, use the ones below instead -CRYPTOPP_DLL bool CRYPTOPP_API IsFermatProbablePrime(const Integer &n, const Integer &b); -CRYPTOPP_DLL bool CRYPTOPP_API IsLucasProbablePrime(const Integer &n); - -CRYPTOPP_DLL bool CRYPTOPP_API IsStrongProbablePrime(const Integer &n, const Integer &b); -CRYPTOPP_DLL bool CRYPTOPP_API IsStrongLucasProbablePrime(const Integer &n); - -// Rabin-Miller primality test, i.e. repeating the strong probable prime test -// for several rounds with random bases -CRYPTOPP_DLL bool CRYPTOPP_API RabinMillerTest(RandomNumberGenerator &rng, const Integer &w, unsigned int rounds); - -// primality test, used to generate primes -CRYPTOPP_DLL bool CRYPTOPP_API IsPrime(const Integer &p); - -// more reliable than IsPrime(), used to verify primes generated by others -CRYPTOPP_DLL bool CRYPTOPP_API VerifyPrime(RandomNumberGenerator &rng, const Integer &p, unsigned int level = 1); - -class CRYPTOPP_DLL PrimeSelector -{ -public: - const PrimeSelector *GetSelectorPointer() const {return this;} - virtual bool IsAcceptable(const Integer &candidate) const =0; -}; - -// use a fast sieve to find the first probable prime in {x | p<=x<=max and x%mod==equiv} -// returns true iff successful, value of p is undefined if no such prime exists -CRYPTOPP_DLL bool CRYPTOPP_API FirstPrime(Integer &p, const Integer &max, const Integer &equiv, const Integer &mod, const PrimeSelector *pSelector); - -CRYPTOPP_DLL unsigned int CRYPTOPP_API PrimeSearchInterval(const Integer &max); - -CRYPTOPP_DLL AlgorithmParameters CRYPTOPP_API MakeParametersForTwoPrimesOfEqualSize(unsigned int productBitLength); - -// ********** other number theoretic functions ************ - -inline Integer GCD(const Integer &a, const Integer &b) - {return Integer::Gcd(a,b);} -inline bool RelativelyPrime(const Integer &a, const Integer &b) - {return Integer::Gcd(a,b) == Integer::One();} -inline Integer LCM(const Integer &a, const Integer &b) - {return a/Integer::Gcd(a,b)*b;} -inline Integer EuclideanMultiplicativeInverse(const Integer &a, const Integer &b) - {return a.InverseMod(b);} - -// use Chinese Remainder Theorem to calculate x given x mod p and x mod q, and u = inverse of p mod q -CRYPTOPP_DLL Integer CRYPTOPP_API CRT(const Integer &xp, const Integer &p, const Integer &xq, const Integer &q, const Integer &u); - -// if b is prime, then Jacobi(a, b) returns 0 if a%b==0, 1 if a is quadratic residue mod b, -1 otherwise -// check a number theory book for what Jacobi symbol means when b is not prime -CRYPTOPP_DLL int CRYPTOPP_API Jacobi(const Integer &a, const Integer &b); - -// calculates the Lucas function V_e(p, 1) mod n -CRYPTOPP_DLL Integer CRYPTOPP_API Lucas(const Integer &e, const Integer &p, const Integer &n); -// calculates x such that m==Lucas(e, x, p*q), p q primes, u=inverse of p mod q -CRYPTOPP_DLL Integer CRYPTOPP_API InverseLucas(const Integer &e, const Integer &m, const Integer &p, const Integer &q, const Integer &u); - -inline Integer ModularExponentiation(const Integer &a, const Integer &e, const Integer &m) - {return a_exp_b_mod_c(a, e, m);} -// returns x such that x*x%p == a, p prime -CRYPTOPP_DLL Integer CRYPTOPP_API ModularSquareRoot(const Integer &a, const Integer &p); -// returns x such that a==ModularExponentiation(x, e, p*q), p q primes, -// and e relatively prime to (p-1)*(q-1) -// dp=d%(p-1), dq=d%(q-1), (d is inverse of e mod (p-1)*(q-1)) -// and u=inverse of p mod q -CRYPTOPP_DLL Integer CRYPTOPP_API ModularRoot(const Integer &a, const Integer &dp, const Integer &dq, const Integer &p, const Integer &q, const Integer &u); - -// find r1 and r2 such that ax^2 + bx + c == 0 (mod p) for x in {r1, r2}, p prime -// returns true if solutions exist -CRYPTOPP_DLL bool CRYPTOPP_API SolveModularQuadraticEquation(Integer &r1, Integer &r2, const Integer &a, const Integer &b, const Integer &c, const Integer &p); - -// returns log base 2 of estimated number of operations to calculate discrete log or factor a number -CRYPTOPP_DLL unsigned int CRYPTOPP_API DiscreteLogWorkFactor(unsigned int bitlength); -CRYPTOPP_DLL unsigned int CRYPTOPP_API FactoringWorkFactor(unsigned int bitlength); - -// ******************************************************** - -//! generator of prime numbers of special forms -class CRYPTOPP_DLL PrimeAndGenerator -{ -public: - PrimeAndGenerator() {} - // generate a random prime p of the form 2*q+delta, where delta is 1 or -1 and q is also prime - // Precondition: pbits > 5 - // warning: this is slow, because primes of this form are harder to find - PrimeAndGenerator(signed int delta, RandomNumberGenerator &rng, unsigned int pbits) - {Generate(delta, rng, pbits, pbits-1);} - // generate a random prime p of the form 2*r*q+delta, where q is also prime - // Precondition: qbits > 4 && pbits > qbits - PrimeAndGenerator(signed int delta, RandomNumberGenerator &rng, unsigned int pbits, unsigned qbits) - {Generate(delta, rng, pbits, qbits);} - - void Generate(signed int delta, RandomNumberGenerator &rng, unsigned int pbits, unsigned qbits); - - const Integer& Prime() const {return p;} - const Integer& SubPrime() const {return q;} - const Integer& Generator() const {return g;} - -private: - Integer p, q, g; -}; - -NAMESPACE_END - -#endif |