diff options
Diffstat (limited to 'cryptopp562/misc.h')
-rw-r--r-- | cryptopp562/misc.h | 1282 |
1 files changed, 1282 insertions, 0 deletions
diff --git a/cryptopp562/misc.h b/cryptopp562/misc.h new file mode 100644 index 0000000..2b326dd --- /dev/null +++ b/cryptopp562/misc.h @@ -0,0 +1,1282 @@ +#ifndef CRYPTOPP_MISC_H +#define CRYPTOPP_MISC_H + +#include "cryptlib.h" +#include "smartptr.h" +#include <string.h> // for memcpy and memmove + +#ifdef _MSC_VER + #if _MSC_VER >= 1400 + // VC2005 workaround: disable declarations that conflict with winnt.h + #define _interlockedbittestandset CRYPTOPP_DISABLED_INTRINSIC_1 + #define _interlockedbittestandreset CRYPTOPP_DISABLED_INTRINSIC_2 + #define _interlockedbittestandset64 CRYPTOPP_DISABLED_INTRINSIC_3 + #define _interlockedbittestandreset64 CRYPTOPP_DISABLED_INTRINSIC_4 + #include <intrin.h> + #undef _interlockedbittestandset + #undef _interlockedbittestandreset + #undef _interlockedbittestandset64 + #undef _interlockedbittestandreset64 + #define CRYPTOPP_FAST_ROTATE(x) 1 + #elif _MSC_VER >= 1300 + #define CRYPTOPP_FAST_ROTATE(x) ((x) == 32 | (x) == 64) + #else + #define CRYPTOPP_FAST_ROTATE(x) ((x) == 32) + #endif +#elif (defined(__MWERKS__) && TARGET_CPU_PPC) || \ + (defined(__GNUC__) && (defined(_ARCH_PWR2) || defined(_ARCH_PWR) || defined(_ARCH_PPC) || defined(_ARCH_PPC64) || defined(_ARCH_COM))) + #define CRYPTOPP_FAST_ROTATE(x) ((x) == 32) +#elif defined(__GNUC__) && (CRYPTOPP_BOOL_X64 || CRYPTOPP_BOOL_X86) // depend on GCC's peephole optimization to generate rotate instructions + #define CRYPTOPP_FAST_ROTATE(x) 1 +#else + #define CRYPTOPP_FAST_ROTATE(x) 0 +#endif + +#ifdef __BORLANDC__ +#include <mem.h> +#endif + +#if defined(__GNUC__) && defined(__linux__) +#define CRYPTOPP_BYTESWAP_AVAILABLE +#include <byteswap.h> +#endif + +NAMESPACE_BEGIN(CryptoPP) + +// ************** compile-time assertion *************** + +template <bool b> +struct CompileAssert +{ + static char dummy[2*b-1]; +}; + +#define CRYPTOPP_COMPILE_ASSERT(assertion) CRYPTOPP_COMPILE_ASSERT_INSTANCE(assertion, __LINE__) +#if defined(CRYPTOPP_EXPORTS) || defined(CRYPTOPP_IMPORTS) +#define CRYPTOPP_COMPILE_ASSERT_INSTANCE(assertion, instance) +#else +#define CRYPTOPP_COMPILE_ASSERT_INSTANCE(assertion, instance) static CompileAssert<(assertion)> CRYPTOPP_ASSERT_JOIN(cryptopp_assert_, instance) +#endif +#define CRYPTOPP_ASSERT_JOIN(X, Y) CRYPTOPP_DO_ASSERT_JOIN(X, Y) +#define CRYPTOPP_DO_ASSERT_JOIN(X, Y) X##Y + +// ************** misc classes *************** + +class CRYPTOPP_DLL Empty +{ +}; + +//! _ +template <class BASE1, class BASE2> +class CRYPTOPP_NO_VTABLE TwoBases : public BASE1, public BASE2 +{ +}; + +//! _ +template <class BASE1, class BASE2, class BASE3> +class CRYPTOPP_NO_VTABLE ThreeBases : public BASE1, public BASE2, public BASE3 +{ +}; + +template <class T> +class ObjectHolder +{ +protected: + T m_object; +}; + +class NotCopyable +{ +public: + NotCopyable() {} +private: + NotCopyable(const NotCopyable &); + void operator=(const NotCopyable &); +}; + +template <class T> +struct NewObject +{ + T* operator()() const {return new T;} +}; + +/*! This function safely initializes a static object in a multithreaded environment without using locks (for portability). + Note that if two threads call Ref() at the same time, they may get back different references, and one object + may end up being memory leaked. This is by design. +*/ +template <class T, class F = NewObject<T>, int instance=0> +class Singleton +{ +public: + Singleton(F objectFactory = F()) : m_objectFactory(objectFactory) {} + + // prevent this function from being inlined + CRYPTOPP_NOINLINE const T & Ref(CRYPTOPP_NOINLINE_DOTDOTDOT) const; + +private: + F m_objectFactory; +}; + +template <class T, class F, int instance> +const T & Singleton<T, F, instance>::Ref(CRYPTOPP_NOINLINE_DOTDOTDOT) const +{ + static volatile simple_ptr<T> s_pObject; + T *p = s_pObject.m_p; + + if (p) + return *p; + + T *newObject = m_objectFactory(); + p = s_pObject.m_p; + + if (p) + { + delete newObject; + return *p; + } + + s_pObject.m_p = newObject; + return *newObject; +} + +// ************** misc functions *************** + +#if (!__STDC_WANT_SECURE_LIB__ && !defined(_MEMORY_S_DEFINED)) +inline void memcpy_s(void *dest, size_t sizeInBytes, const void *src, size_t count) +{ + if (count > sizeInBytes) + throw InvalidArgument("memcpy_s: buffer overflow"); + memcpy(dest, src, count); +} + +inline void memmove_s(void *dest, size_t sizeInBytes, const void *src, size_t count) +{ + if (count > sizeInBytes) + throw InvalidArgument("memmove_s: buffer overflow"); + memmove(dest, src, count); +} + +#if __BORLANDC__ >= 0x620 +// C++Builder 2010 workaround: can't use std::memcpy_s because it doesn't allow 0 lengths +#define memcpy_s CryptoPP::memcpy_s +#define memmove_s CryptoPP::memmove_s +#endif +#endif + +inline void * memset_z(void *ptr, int value, size_t num) +{ +// avoid extranous warning on GCC 4.3.2 Ubuntu 8.10 +#if CRYPTOPP_GCC_VERSION >= 30001 + if (__builtin_constant_p(num) && num==0) + return ptr; +#endif + return memset(ptr, value, num); +} + +// can't use std::min or std::max in MSVC60 or Cygwin 1.1.0 +template <class T> inline const T& STDMIN(const T& a, const T& b) +{ + return b < a ? b : a; +} + +template <class T1, class T2> inline const T1 UnsignedMin(const T1& a, const T2& b) +{ + CRYPTOPP_COMPILE_ASSERT((sizeof(T1)<=sizeof(T2) && T2(-1)>0) || (sizeof(T1)>sizeof(T2) && T1(-1)>0)); + assert(a==0 || a>0); // GCC workaround: get rid of the warning "comparison is always true due to limited range of data type" + assert(b>=0); + + if (sizeof(T1)<=sizeof(T2)) + return b < (T2)a ? (T1)b : a; + else + return (T1)b < a ? (T1)b : a; +} + +template <class T> inline const T& STDMAX(const T& a, const T& b) +{ + return a < b ? b : a; +} + +#define RETURN_IF_NONZERO(x) size_t returnedValue = x; if (returnedValue) return returnedValue + +// this version of the macro is fastest on Pentium 3 and Pentium 4 with MSVC 6 SP5 w/ Processor Pack +#define GETBYTE(x, y) (unsigned int)byte((x)>>(8*(y))) +// these may be faster on other CPUs/compilers +// #define GETBYTE(x, y) (unsigned int)(((x)>>(8*(y)))&255) +// #define GETBYTE(x, y) (((byte *)&(x))[y]) + +#define CRYPTOPP_GET_BYTE_AS_BYTE(x, y) byte((x)>>(8*(y))) + +template <class T> +unsigned int Parity(T value) +{ + for (unsigned int i=8*sizeof(value)/2; i>0; i/=2) + value ^= value >> i; + return (unsigned int)value&1; +} + +template <class T> +unsigned int BytePrecision(const T &value) +{ + if (!value) + return 0; + + unsigned int l=0, h=8*sizeof(value); + + while (h-l > 8) + { + unsigned int t = (l+h)/2; + if (value >> t) + l = t; + else + h = t; + } + + return h/8; +} + +template <class T> +unsigned int BitPrecision(const T &value) +{ + if (!value) + return 0; + + unsigned int l=0, h=8*sizeof(value); + + while (h-l > 1) + { + unsigned int t = (l+h)/2; + if (value >> t) + l = t; + else + h = t; + } + + return h; +} + +inline unsigned int TrailingZeros(word32 v) +{ +#if defined(__GNUC__) && CRYPTOPP_GCC_VERSION >= 30400 + return __builtin_ctz(v); +#elif defined(_MSC_VER) && _MSC_VER >= 1400 + unsigned long result; + _BitScanForward(&result, v); + return result; +#else + // from http://graphics.stanford.edu/~seander/bithacks.html#ZerosOnRightMultLookup + static const int MultiplyDeBruijnBitPosition[32] = + { + 0, 1, 28, 2, 29, 14, 24, 3, 30, 22, 20, 15, 25, 17, 4, 8, + 31, 27, 13, 23, 21, 19, 16, 7, 26, 12, 18, 6, 11, 5, 10, 9 + }; + return MultiplyDeBruijnBitPosition[((word32)((v & -v) * 0x077CB531U)) >> 27]; +#endif +} + +inline unsigned int TrailingZeros(word64 v) +{ +#if defined(__GNUC__) && CRYPTOPP_GCC_VERSION >= 30400 + return __builtin_ctzll(v); +#elif defined(_MSC_VER) && _MSC_VER >= 1400 && (defined(_M_X64) || defined(_M_IA64)) + unsigned long result; + _BitScanForward64(&result, v); + return result; +#else + return word32(v) ? TrailingZeros(word32(v)) : 32 + TrailingZeros(word32(v>>32)); +#endif +} + +template <class T> +inline T Crop(T value, size_t size) +{ + if (size < 8*sizeof(value)) + return T(value & ((T(1) << size) - 1)); + else + return value; +} + +template <class T1, class T2> +inline bool SafeConvert(T1 from, T2 &to) +{ + to = (T2)from; + if (from != to || (from > 0) != (to > 0)) + return false; + return true; +} + +inline size_t BitsToBytes(size_t bitCount) +{ + return ((bitCount+7)/(8)); +} + +inline size_t BytesToWords(size_t byteCount) +{ + return ((byteCount+WORD_SIZE-1)/WORD_SIZE); +} + +inline size_t BitsToWords(size_t bitCount) +{ + return ((bitCount+WORD_BITS-1)/(WORD_BITS)); +} + +inline size_t BitsToDwords(size_t bitCount) +{ + return ((bitCount+2*WORD_BITS-1)/(2*WORD_BITS)); +} + +CRYPTOPP_DLL void CRYPTOPP_API xorbuf(byte *buf, const byte *mask, size_t count); +CRYPTOPP_DLL void CRYPTOPP_API xorbuf(byte *output, const byte *input, const byte *mask, size_t count); + +CRYPTOPP_DLL bool CRYPTOPP_API VerifyBufsEqual(const byte *buf1, const byte *buf2, size_t count); + +template <class T> +inline bool IsPowerOf2(const T &n) +{ + return n > 0 && (n & (n-1)) == 0; +} + +template <class T1, class T2> +inline T2 ModPowerOf2(const T1 &a, const T2 &b) +{ + assert(IsPowerOf2(b)); + return T2(a) & (b-1); +} + +template <class T1, class T2> +inline T1 RoundDownToMultipleOf(const T1 &n, const T2 &m) +{ + if (IsPowerOf2(m)) + return n - ModPowerOf2(n, m); + else + return n - n%m; +} + +template <class T1, class T2> +inline T1 RoundUpToMultipleOf(const T1 &n, const T2 &m) +{ + if (n+m-1 < n) + throw InvalidArgument("RoundUpToMultipleOf: integer overflow"); + return RoundDownToMultipleOf(n+m-1, m); +} + +template <class T> +inline unsigned int GetAlignmentOf(T *dummy=NULL) // VC60 workaround +{ +#ifdef CRYPTOPP_ALLOW_UNALIGNED_DATA_ACCESS + if (sizeof(T) < 16) + return 1; +#endif + +#if (_MSC_VER >= 1300) + return __alignof(T); +#elif defined(__GNUC__) + return __alignof__(T); +#elif CRYPTOPP_BOOL_SLOW_WORD64 + return UnsignedMin(4U, sizeof(T)); +#else + return sizeof(T); +#endif +} + +inline bool IsAlignedOn(const void *p, unsigned int alignment) +{ + return alignment==1 || (IsPowerOf2(alignment) ? ModPowerOf2((size_t)p, alignment) == 0 : (size_t)p % alignment == 0); +} + +template <class T> +inline bool IsAligned(const void *p, T *dummy=NULL) // VC60 workaround +{ + return IsAlignedOn(p, GetAlignmentOf<T>()); +} + +#ifdef IS_LITTLE_ENDIAN + typedef LittleEndian NativeByteOrder; +#else + typedef BigEndian NativeByteOrder; +#endif + +inline ByteOrder GetNativeByteOrder() +{ + return NativeByteOrder::ToEnum(); +} + +inline bool NativeByteOrderIs(ByteOrder order) +{ + return order == GetNativeByteOrder(); +} + +template <class T> +std::string IntToString(T a, unsigned int base = 10) +{ + if (a == 0) + return "0"; + bool negate = false; + if (a < 0) + { + negate = true; + a = 0-a; // VC .NET does not like -a + } + std::string result; + while (a > 0) + { + T digit = a % base; + result = char((digit < 10 ? '0' : ('a' - 10)) + digit) + result; + a /= base; + } + if (negate) + result = "-" + result; + return result; +} + +template <class T1, class T2> +inline T1 SaturatingSubtract(const T1 &a, const T2 &b) +{ + return T1((a > b) ? (a - b) : 0); +} + +template <class T> +inline CipherDir GetCipherDir(const T &obj) +{ + return obj.IsForwardTransformation() ? ENCRYPTION : DECRYPTION; +} + +CRYPTOPP_DLL void CRYPTOPP_API CallNewHandler(); + +inline void IncrementCounterByOne(byte *inout, unsigned int s) +{ + for (int i=s-1, carry=1; i>=0 && carry; i--) + carry = !++inout[i]; +} + +inline void IncrementCounterByOne(byte *output, const byte *input, unsigned int s) +{ + int i, carry; + for (i=s-1, carry=1; i>=0 && carry; i--) + carry = ((output[i] = input[i]+1) == 0); + memcpy_s(output, s, input, i+1); +} + +template <class T> +inline void ConditionalSwap(bool c, T &a, T &b) +{ + T t = c * (a ^ b); + a ^= t; + b ^= t; +} + +template <class T> +inline void ConditionalSwapPointers(bool c, T &a, T &b) +{ + ptrdiff_t t = c * (a - b); + a -= t; + b += t; +} + +// see http://www.dwheeler.com/secure-programs/Secure-Programs-HOWTO/protect-secrets.html +// and https://www.securecoding.cert.org/confluence/display/cplusplus/MSC06-CPP.+Be+aware+of+compiler+optimization+when+dealing+with+sensitive+data +template <class T> +void SecureWipeBuffer(T *buf, size_t n) +{ + // GCC 4.3.2 on Cygwin optimizes away the first store if this loop is done in the forward direction + volatile T *p = buf+n; + while (n--) + *(--p) = 0; +} + +#if (_MSC_VER >= 1400 || defined(__GNUC__)) && (CRYPTOPP_BOOL_X64 || CRYPTOPP_BOOL_X86) + +template<> inline void SecureWipeBuffer(byte *buf, size_t n) +{ + volatile byte *p = buf; +#ifdef __GNUC__ + asm volatile("rep stosb" : "+c"(n), "+D"(p) : "a"(0) : "memory"); +#else + __stosb((byte *)(size_t)p, 0, n); +#endif +} + +template<> inline void SecureWipeBuffer(word16 *buf, size_t n) +{ + volatile word16 *p = buf; +#ifdef __GNUC__ + asm volatile("rep stosw" : "+c"(n), "+D"(p) : "a"(0) : "memory"); +#else + __stosw((word16 *)(size_t)p, 0, n); +#endif +} + +template<> inline void SecureWipeBuffer(word32 *buf, size_t n) +{ + volatile word32 *p = buf; +#ifdef __GNUC__ + asm volatile("rep stosl" : "+c"(n), "+D"(p) : "a"(0) : "memory"); +#else + __stosd((unsigned long *)(size_t)p, 0, n); +#endif +} + +template<> inline void SecureWipeBuffer(word64 *buf, size_t n) +{ +#if CRYPTOPP_BOOL_X64 + volatile word64 *p = buf; +#ifdef __GNUC__ + asm volatile("rep stosq" : "+c"(n), "+D"(p) : "a"(0) : "memory"); +#else + __stosq((word64 *)(size_t)p, 0, n); +#endif +#else + SecureWipeBuffer((word32 *)buf, 2*n); +#endif +} + +#endif // #if (_MSC_VER >= 1400 || defined(__GNUC__)) && (CRYPTOPP_BOOL_X64 || CRYPTOPP_BOOL_X86) + +template <class T> +inline void SecureWipeArray(T *buf, size_t n) +{ + if (sizeof(T) % 8 == 0 && GetAlignmentOf<T>() % GetAlignmentOf<word64>() == 0) + SecureWipeBuffer((word64 *)buf, n * (sizeof(T)/8)); + else if (sizeof(T) % 4 == 0 && GetAlignmentOf<T>() % GetAlignmentOf<word32>() == 0) + SecureWipeBuffer((word32 *)buf, n * (sizeof(T)/4)); + else if (sizeof(T) % 2 == 0 && GetAlignmentOf<T>() % GetAlignmentOf<word16>() == 0) + SecureWipeBuffer((word16 *)buf, n * (sizeof(T)/2)); + else + SecureWipeBuffer((byte *)buf, n * sizeof(T)); +} + +// this function uses wcstombs(), which assumes that setlocale() has been called +static std::string StringNarrow(const wchar_t *str, bool throwOnError = true) +{ +#ifdef _MSC_VER +#pragma warning(push) +#pragma warning(disable: 4996) // 'wcstombs': This function or variable may be unsafe. +#endif + size_t size = wcstombs(NULL, str, 0); + if (size == size_t(0)-1) + { + if (throwOnError) + throw InvalidArgument("StringNarrow: wcstombs() call failed"); + else + return std::string(); + } + std::string result(size, 0); + wcstombs(&result[0], str, size); + return result; +#ifdef _MSC_VER +#pragma warning(pop) +#endif +} + +#if CRYPTOPP_BOOL_ALIGN16_ENABLED +CRYPTOPP_DLL void * CRYPTOPP_API AlignedAllocate(size_t size); +CRYPTOPP_DLL void CRYPTOPP_API AlignedDeallocate(void *p); +#endif + +CRYPTOPP_DLL void * CRYPTOPP_API UnalignedAllocate(size_t size); +CRYPTOPP_DLL void CRYPTOPP_API UnalignedDeallocate(void *p); + +// ************** rotate functions *************** + +template <class T> inline T rotlFixed(T x, unsigned int y) +{ + assert(y < sizeof(T)*8); + return y ? T((x<<y) | (x>>(sizeof(T)*8-y))) : x; +} + +template <class T> inline T rotrFixed(T x, unsigned int y) +{ + assert(y < sizeof(T)*8); + return y ? T((x>>y) | (x<<(sizeof(T)*8-y))) : x; +} + +template <class T> inline T rotlVariable(T x, unsigned int y) +{ + assert(y < sizeof(T)*8); + return T((x<<y) | (x>>(sizeof(T)*8-y))); +} + +template <class T> inline T rotrVariable(T x, unsigned int y) +{ + assert(y < sizeof(T)*8); + return T((x>>y) | (x<<(sizeof(T)*8-y))); +} + +template <class T> inline T rotlMod(T x, unsigned int y) +{ + y %= sizeof(T)*8; + return T((x<<y) | (x>>(sizeof(T)*8-y))); +} + +template <class T> inline T rotrMod(T x, unsigned int y) +{ + y %= sizeof(T)*8; + return T((x>>y) | (x<<(sizeof(T)*8-y))); +} + +#ifdef _MSC_VER + +template<> inline word32 rotlFixed<word32>(word32 x, unsigned int y) +{ + assert(y < 8*sizeof(x)); + return y ? _lrotl(x, y) : x; +} + +template<> inline word32 rotrFixed<word32>(word32 x, unsigned int y) +{ + assert(y < 8*sizeof(x)); + return y ? _lrotr(x, y) : x; +} + +template<> inline word32 rotlVariable<word32>(word32 x, unsigned int y) +{ + assert(y < 8*sizeof(x)); + return _lrotl(x, y); +} + +template<> inline word32 rotrVariable<word32>(word32 x, unsigned int y) +{ + assert(y < 8*sizeof(x)); + return _lrotr(x, y); +} + +template<> inline word32 rotlMod<word32>(word32 x, unsigned int y) +{ + return _lrotl(x, y); +} + +template<> inline word32 rotrMod<word32>(word32 x, unsigned int y) +{ + return _lrotr(x, y); +} + +#endif // #ifdef _MSC_VER + +#if _MSC_VER >= 1300 && !defined(__INTEL_COMPILER) +// Intel C++ Compiler 10.0 calls a function instead of using the rotate instruction when using these instructions + +template<> inline word64 rotlFixed<word64>(word64 x, unsigned int y) +{ + assert(y < 8*sizeof(x)); + return y ? _rotl64(x, y) : x; +} + +template<> inline word64 rotrFixed<word64>(word64 x, unsigned int y) +{ + assert(y < 8*sizeof(x)); + return y ? _rotr64(x, y) : x; +} + +template<> inline word64 rotlVariable<word64>(word64 x, unsigned int y) +{ + assert(y < 8*sizeof(x)); + return _rotl64(x, y); +} + +template<> inline word64 rotrVariable<word64>(word64 x, unsigned int y) +{ + assert(y < 8*sizeof(x)); + return _rotr64(x, y); +} + +template<> inline word64 rotlMod<word64>(word64 x, unsigned int y) +{ + return _rotl64(x, y); +} + +template<> inline word64 rotrMod<word64>(word64 x, unsigned int y) +{ + return _rotr64(x, y); +} + +#endif // #if _MSC_VER >= 1310 + +#if _MSC_VER >= 1400 && !defined(__INTEL_COMPILER) +// Intel C++ Compiler 10.0 gives undefined externals with these + +template<> inline word16 rotlFixed<word16>(word16 x, unsigned int y) +{ + assert(y < 8*sizeof(x)); + return y ? _rotl16(x, y) : x; +} + +template<> inline word16 rotrFixed<word16>(word16 x, unsigned int y) +{ + assert(y < 8*sizeof(x)); + return y ? _rotr16(x, y) : x; +} + +template<> inline word16 rotlVariable<word16>(word16 x, unsigned int y) +{ + assert(y < 8*sizeof(x)); + return _rotl16(x, y); +} + +template<> inline word16 rotrVariable<word16>(word16 x, unsigned int y) +{ + assert(y < 8*sizeof(x)); + return _rotr16(x, y); +} + +template<> inline word16 rotlMod<word16>(word16 x, unsigned int y) +{ + return _rotl16(x, y); +} + +template<> inline word16 rotrMod<word16>(word16 x, unsigned int y) +{ + return _rotr16(x, y); +} + +template<> inline byte rotlFixed<byte>(byte x, unsigned int y) +{ + assert(y < 8*sizeof(x)); + return y ? _rotl8(x, y) : x; +} + +template<> inline byte rotrFixed<byte>(byte x, unsigned int y) +{ + assert(y < 8*sizeof(x)); + return y ? _rotr8(x, y) : x; +} + +template<> inline byte rotlVariable<byte>(byte x, unsigned int y) +{ + assert(y < 8*sizeof(x)); + return _rotl8(x, y); +} + +template<> inline byte rotrVariable<byte>(byte x, unsigned int y) +{ + assert(y < 8*sizeof(x)); + return _rotr8(x, y); +} + +template<> inline byte rotlMod<byte>(byte x, unsigned int y) +{ + return _rotl8(x, y); +} + +template<> inline byte rotrMod<byte>(byte x, unsigned int y) +{ + return _rotr8(x, y); +} + +#endif // #if _MSC_VER >= 1400 + +#if (defined(__MWERKS__) && TARGET_CPU_PPC) + +template<> inline word32 rotlFixed<word32>(word32 x, unsigned int y) +{ + assert(y < 32); + return y ? __rlwinm(x,y,0,31) : x; +} + +template<> inline word32 rotrFixed<word32>(word32 x, unsigned int y) +{ + assert(y < 32); + return y ? __rlwinm(x,32-y,0,31) : x; +} + +template<> inline word32 rotlVariable<word32>(word32 x, unsigned int y) +{ + assert(y < 32); + return (__rlwnm(x,y,0,31)); +} + +template<> inline word32 rotrVariable<word32>(word32 x, unsigned int y) +{ + assert(y < 32); + return (__rlwnm(x,32-y,0,31)); +} + +template<> inline word32 rotlMod<word32>(word32 x, unsigned int y) +{ + return (__rlwnm(x,y,0,31)); +} + +template<> inline word32 rotrMod<word32>(word32 x, unsigned int y) +{ + return (__rlwnm(x,32-y,0,31)); +} + +#endif // #if (defined(__MWERKS__) && TARGET_CPU_PPC) + +// ************** endian reversal *************** + +template <class T> +inline unsigned int GetByte(ByteOrder order, T value, unsigned int index) +{ + if (order == LITTLE_ENDIAN_ORDER) + return GETBYTE(value, index); + else + return GETBYTE(value, sizeof(T)-index-1); +} + +inline byte ByteReverse(byte value) +{ + return value; +} + +inline word16 ByteReverse(word16 value) +{ +#ifdef CRYPTOPP_BYTESWAP_AVAILABLE + return bswap_16(value); +#elif defined(_MSC_VER) && _MSC_VER >= 1300 + return _byteswap_ushort(value); +#else + return rotlFixed(value, 8U); +#endif +} + +inline word32 ByteReverse(word32 value) +{ +#if defined(__GNUC__) && defined(CRYPTOPP_X86_ASM_AVAILABLE) + __asm__ ("bswap %0" : "=r" (value) : "0" (value)); + return value; +#elif defined(CRYPTOPP_BYTESWAP_AVAILABLE) + return bswap_32(value); +#elif defined(__MWERKS__) && TARGET_CPU_PPC + return (word32)__lwbrx(&value,0); +#elif _MSC_VER >= 1400 || (_MSC_VER >= 1300 && !defined(_DLL)) + return _byteswap_ulong(value); +#elif CRYPTOPP_FAST_ROTATE(32) + // 5 instructions with rotate instruction, 9 without + return (rotrFixed(value, 8U) & 0xff00ff00) | (rotlFixed(value, 8U) & 0x00ff00ff); +#else + // 6 instructions with rotate instruction, 8 without + value = ((value & 0xFF00FF00) >> 8) | ((value & 0x00FF00FF) << 8); + return rotlFixed(value, 16U); +#endif +} + +inline word64 ByteReverse(word64 value) +{ +#if defined(__GNUC__) && defined(CRYPTOPP_X86_ASM_AVAILABLE) && defined(__x86_64__) + __asm__ ("bswap %0" : "=r" (value) : "0" (value)); + return value; +#elif defined(CRYPTOPP_BYTESWAP_AVAILABLE) + return bswap_64(value); +#elif defined(_MSC_VER) && _MSC_VER >= 1300 + return _byteswap_uint64(value); +#elif CRYPTOPP_BOOL_SLOW_WORD64 + return (word64(ByteReverse(word32(value))) << 32) | ByteReverse(word32(value>>32)); +#else + value = ((value & W64LIT(0xFF00FF00FF00FF00)) >> 8) | ((value & W64LIT(0x00FF00FF00FF00FF)) << 8); + value = ((value & W64LIT(0xFFFF0000FFFF0000)) >> 16) | ((value & W64LIT(0x0000FFFF0000FFFF)) << 16); + return rotlFixed(value, 32U); +#endif +} + +inline byte BitReverse(byte value) +{ + value = ((value & 0xAA) >> 1) | ((value & 0x55) << 1); + value = ((value & 0xCC) >> 2) | ((value & 0x33) << 2); + return rotlFixed(value, 4U); +} + +inline word16 BitReverse(word16 value) +{ + value = ((value & 0xAAAA) >> 1) | ((value & 0x5555) << 1); + value = ((value & 0xCCCC) >> 2) | ((value & 0x3333) << 2); + value = ((value & 0xF0F0) >> 4) | ((value & 0x0F0F) << 4); + return ByteReverse(value); +} + +inline word32 BitReverse(word32 value) +{ + value = ((value & 0xAAAAAAAA) >> 1) | ((value & 0x55555555) << 1); + value = ((value & 0xCCCCCCCC) >> 2) | ((value & 0x33333333) << 2); + value = ((value & 0xF0F0F0F0) >> 4) | ((value & 0x0F0F0F0F) << 4); + return ByteReverse(value); +} + +inline word64 BitReverse(word64 value) +{ +#if CRYPTOPP_BOOL_SLOW_WORD64 + return (word64(BitReverse(word32(value))) << 32) | BitReverse(word32(value>>32)); +#else + value = ((value & W64LIT(0xAAAAAAAAAAAAAAAA)) >> 1) | ((value & W64LIT(0x5555555555555555)) << 1); + value = ((value & W64LIT(0xCCCCCCCCCCCCCCCC)) >> 2) | ((value & W64LIT(0x3333333333333333)) << 2); + value = ((value & W64LIT(0xF0F0F0F0F0F0F0F0)) >> 4) | ((value & W64LIT(0x0F0F0F0F0F0F0F0F)) << 4); + return ByteReverse(value); +#endif +} + +template <class T> +inline T BitReverse(T value) +{ + if (sizeof(T) == 1) + return (T)BitReverse((byte)value); + else if (sizeof(T) == 2) + return (T)BitReverse((word16)value); + else if (sizeof(T) == 4) + return (T)BitReverse((word32)value); + else + { + assert(sizeof(T) == 8); + return (T)BitReverse((word64)value); + } +} + +template <class T> +inline T ConditionalByteReverse(ByteOrder order, T value) +{ + return NativeByteOrderIs(order) ? value : ByteReverse(value); +} + +template <class T> +void ByteReverse(T *out, const T *in, size_t byteCount) +{ + assert(byteCount % sizeof(T) == 0); + size_t count = byteCount/sizeof(T); + for (size_t i=0; i<count; i++) + out[i] = ByteReverse(in[i]); +} + +template <class T> +inline void ConditionalByteReverse(ByteOrder order, T *out, const T *in, size_t byteCount) +{ + if (!NativeByteOrderIs(order)) + ByteReverse(out, in, byteCount); + else if (in != out) + memcpy_s(out, byteCount, in, byteCount); +} + +template <class T> +inline void GetUserKey(ByteOrder order, T *out, size_t outlen, const byte *in, size_t inlen) +{ + const size_t U = sizeof(T); + assert(inlen <= outlen*U); + memcpy_s(out, outlen*U, in, inlen); + memset_z((byte *)out+inlen, 0, outlen*U-inlen); + ConditionalByteReverse(order, out, out, RoundUpToMultipleOf(inlen, U)); +} + +#ifndef CRYPTOPP_ALLOW_UNALIGNED_DATA_ACCESS +inline byte UnalignedGetWordNonTemplate(ByteOrder order, const byte *block, const byte *) +{ + return block[0]; +} + +inline word16 UnalignedGetWordNonTemplate(ByteOrder order, const byte *block, const word16 *) +{ + return (order == BIG_ENDIAN_ORDER) + ? block[1] | (block[0] << 8) + : block[0] | (block[1] << 8); +} + +inline word32 UnalignedGetWordNonTemplate(ByteOrder order, const byte *block, const word32 *) +{ + return (order == BIG_ENDIAN_ORDER) + ? word32(block[3]) | (word32(block[2]) << 8) | (word32(block[1]) << 16) | (word32(block[0]) << 24) + : word32(block[0]) | (word32(block[1]) << 8) | (word32(block[2]) << 16) | (word32(block[3]) << 24); +} + +inline word64 UnalignedGetWordNonTemplate(ByteOrder order, const byte *block, const word64 *) +{ + return (order == BIG_ENDIAN_ORDER) + ? + (word64(block[7]) | + (word64(block[6]) << 8) | + (word64(block[5]) << 16) | + (word64(block[4]) << 24) | + (word64(block[3]) << 32) | + (word64(block[2]) << 40) | + (word64(block[1]) << 48) | + (word64(block[0]) << 56)) + : + (word64(block[0]) | + (word64(block[1]) << 8) | + (word64(block[2]) << 16) | + (word64(block[3]) << 24) | + (word64(block[4]) << 32) | + (word64(block[5]) << 40) | + (word64(block[6]) << 48) | + (word64(block[7]) << 56)); +} + +inline void UnalignedPutWordNonTemplate(ByteOrder order, byte *block, byte value, const byte *xorBlock) +{ + block[0] = xorBlock ? (value ^ xorBlock[0]) : value; +} + +inline void UnalignedPutWordNonTemplate(ByteOrder order, byte *block, word16 value, const byte *xorBlock) +{ + if (order == BIG_ENDIAN_ORDER) + { + if (xorBlock) + { + block[0] = xorBlock[0] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 1); + block[1] = xorBlock[1] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 0); + } + else + { + block[0] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 1); + block[1] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 0); + } + } + else + { + if (xorBlock) + { + block[0] = xorBlock[0] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 0); + block[1] = xorBlock[1] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 1); + } + else + { + block[0] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 0); + block[1] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 1); + } + } +} + +inline void UnalignedPutWordNonTemplate(ByteOrder order, byte *block, word32 value, const byte *xorBlock) +{ + if (order == BIG_ENDIAN_ORDER) + { + if (xorBlock) + { + block[0] = xorBlock[0] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 3); + block[1] = xorBlock[1] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 2); + block[2] = xorBlock[2] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 1); + block[3] = xorBlock[3] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 0); + } + else + { + block[0] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 3); + block[1] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 2); + block[2] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 1); + block[3] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 0); + } + } + else + { + if (xorBlock) + { + block[0] = xorBlock[0] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 0); + block[1] = xorBlock[1] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 1); + block[2] = xorBlock[2] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 2); + block[3] = xorBlock[3] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 3); + } + else + { + block[0] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 0); + block[1] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 1); + block[2] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 2); + block[3] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 3); + } + } +} + +inline void UnalignedPutWordNonTemplate(ByteOrder order, byte *block, word64 value, const byte *xorBlock) +{ + if (order == BIG_ENDIAN_ORDER) + { + if (xorBlock) + { + block[0] = xorBlock[0] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 7); + block[1] = xorBlock[1] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 6); + block[2] = xorBlock[2] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 5); + block[3] = xorBlock[3] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 4); + block[4] = xorBlock[4] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 3); + block[5] = xorBlock[5] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 2); + block[6] = xorBlock[6] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 1); + block[7] = xorBlock[7] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 0); + } + else + { + block[0] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 7); + block[1] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 6); + block[2] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 5); + block[3] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 4); + block[4] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 3); + block[5] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 2); + block[6] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 1); + block[7] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 0); + } + } + else + { + if (xorBlock) + { + block[0] = xorBlock[0] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 0); + block[1] = xorBlock[1] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 1); + block[2] = xorBlock[2] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 2); + block[3] = xorBlock[3] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 3); + block[4] = xorBlock[4] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 4); + block[5] = xorBlock[5] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 5); + block[6] = xorBlock[6] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 6); + block[7] = xorBlock[7] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 7); + } + else + { + block[0] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 0); + block[1] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 1); + block[2] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 2); + block[3] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 3); + block[4] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 4); + block[5] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 5); + block[6] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 6); + block[7] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 7); + } + } +} +#endif // #ifndef CRYPTOPP_ALLOW_UNALIGNED_DATA_ACCESS + +template <class T> +inline T GetWord(bool assumeAligned, ByteOrder order, const byte *block) +{ +#ifndef CRYPTOPP_ALLOW_UNALIGNED_DATA_ACCESS + if (!assumeAligned) + return UnalignedGetWordNonTemplate(order, block, (T*)NULL); + assert(IsAligned<T>(block)); +#endif + return ConditionalByteReverse(order, *reinterpret_cast<const T *>(block)); +} + +template <class T> +inline void GetWord(bool assumeAligned, ByteOrder order, T &result, const byte *block) +{ + result = GetWord<T>(assumeAligned, order, block); +} + +template <class T> +inline void PutWord(bool assumeAligned, ByteOrder order, byte *block, T value, const byte *xorBlock = NULL) +{ +#ifndef CRYPTOPP_ALLOW_UNALIGNED_DATA_ACCESS + if (!assumeAligned) + return UnalignedPutWordNonTemplate(order, block, value, xorBlock); + assert(IsAligned<T>(block)); + assert(IsAligned<T>(xorBlock)); +#endif + *reinterpret_cast<T *>(block) = ConditionalByteReverse(order, value) ^ (xorBlock ? *reinterpret_cast<const T *>(xorBlock) : 0); +} + +template <class T, class B, bool A=false> +class GetBlock +{ +public: + GetBlock(const void *block) + : m_block((const byte *)block) {} + + template <class U> + inline GetBlock<T, B, A> & operator()(U &x) + { + CRYPTOPP_COMPILE_ASSERT(sizeof(U) >= sizeof(T)); + x = GetWord<T>(A, B::ToEnum(), m_block); + m_block += sizeof(T); + return *this; + } + +private: + const byte *m_block; +}; + +template <class T, class B, bool A=false> +class PutBlock +{ +public: + PutBlock(const void *xorBlock, void *block) + : m_xorBlock((const byte *)xorBlock), m_block((byte *)block) {} + + template <class U> + inline PutBlock<T, B, A> & operator()(U x) + { + PutWord(A, B::ToEnum(), m_block, (T)x, m_xorBlock); + m_block += sizeof(T); + if (m_xorBlock) + m_xorBlock += sizeof(T); + return *this; + } + +private: + const byte *m_xorBlock; + byte *m_block; +}; + +template <class T, class B, bool GA=false, bool PA=false> +struct BlockGetAndPut +{ + // function needed because of C++ grammatical ambiguity between expression-statements and declarations + static inline GetBlock<T, B, GA> Get(const void *block) {return GetBlock<T, B, GA>(block);} + typedef PutBlock<T, B, PA> Put; +}; + +template <class T> +std::string WordToString(T value, ByteOrder order = BIG_ENDIAN_ORDER) +{ + if (!NativeByteOrderIs(order)) + value = ByteReverse(value); + + return std::string((char *)&value, sizeof(value)); +} + +template <class T> +T StringToWord(const std::string &str, ByteOrder order = BIG_ENDIAN_ORDER) +{ + T value = 0; + memcpy_s(&value, sizeof(value), str.data(), UnsignedMin(str.size(), sizeof(value))); + return NativeByteOrderIs(order) ? value : ByteReverse(value); +} + +// ************** help remove warning on g++ *************** + +template <bool overflow> struct SafeShifter; + +template<> struct SafeShifter<true> +{ + template <class T> + static inline T RightShift(T value, unsigned int bits) + { + return 0; + } + + template <class T> + static inline T LeftShift(T value, unsigned int bits) + { + return 0; + } +}; + +template<> struct SafeShifter<false> +{ + template <class T> + static inline T RightShift(T value, unsigned int bits) + { + return value >> bits; + } + + template <class T> + static inline T LeftShift(T value, unsigned int bits) + { + return value << bits; + } +}; + +template <unsigned int bits, class T> +inline T SafeRightShift(T value) +{ + return SafeShifter<(bits>=(8*sizeof(T)))>::RightShift(value, bits); +} + +template <unsigned int bits, class T> +inline T SafeLeftShift(T value) +{ + return SafeShifter<(bits>=(8*sizeof(T)))>::LeftShift(value, bits); +} + +// ************** use one buffer for multiple data members *************** + +#define CRYPTOPP_BLOCK_1(n, t, s) t* m_##n() {return (t *)(m_aggregate+0);} size_t SS1() {return sizeof(t)*(s);} size_t m_##n##Size() {return (s);} +#define CRYPTOPP_BLOCK_2(n, t, s) t* m_##n() {return (t *)(m_aggregate+SS1());} size_t SS2() {return SS1()+sizeof(t)*(s);} size_t m_##n##Size() {return (s);} +#define CRYPTOPP_BLOCK_3(n, t, s) t* m_##n() {return (t *)(m_aggregate+SS2());} size_t SS3() {return SS2()+sizeof(t)*(s);} size_t m_##n##Size() {return (s);} +#define CRYPTOPP_BLOCK_4(n, t, s) t* m_##n() {return (t *)(m_aggregate+SS3());} size_t SS4() {return SS3()+sizeof(t)*(s);} size_t m_##n##Size() {return (s);} +#define CRYPTOPP_BLOCK_5(n, t, s) t* m_##n() {return (t *)(m_aggregate+SS4());} size_t SS5() {return SS4()+sizeof(t)*(s);} size_t m_##n##Size() {return (s);} +#define CRYPTOPP_BLOCK_6(n, t, s) t* m_##n() {return (t *)(m_aggregate+SS5());} size_t SS6() {return SS5()+sizeof(t)*(s);} size_t m_##n##Size() {return (s);} +#define CRYPTOPP_BLOCK_7(n, t, s) t* m_##n() {return (t *)(m_aggregate+SS6());} size_t SS7() {return SS6()+sizeof(t)*(s);} size_t m_##n##Size() {return (s);} +#define CRYPTOPP_BLOCK_8(n, t, s) t* m_##n() {return (t *)(m_aggregate+SS7());} size_t SS8() {return SS7()+sizeof(t)*(s);} size_t m_##n##Size() {return (s);} +#define CRYPTOPP_BLOCKS_END(i) size_t SST() {return SS##i();} void AllocateBlocks() {m_aggregate.New(SST());} AlignedSecByteBlock m_aggregate; + +NAMESPACE_END + +#endif |