diff options
Diffstat (limited to 'cryptopp562/gf2n.h')
-rw-r--r-- | cryptopp562/gf2n.h | 369 |
1 files changed, 369 insertions, 0 deletions
diff --git a/cryptopp562/gf2n.h b/cryptopp562/gf2n.h new file mode 100644 index 0000000..67ade64 --- /dev/null +++ b/cryptopp562/gf2n.h @@ -0,0 +1,369 @@ +#ifndef CRYPTOPP_GF2N_H +#define CRYPTOPP_GF2N_H + +/*! \file */ + +#include "cryptlib.h" +#include "secblock.h" +#include "misc.h" +#include "algebra.h" + +#include <iosfwd> + +NAMESPACE_BEGIN(CryptoPP) + +//! Polynomial with Coefficients in GF(2) +/*! \nosubgrouping */ +class CRYPTOPP_DLL PolynomialMod2 +{ +public: + //! \name ENUMS, EXCEPTIONS, and TYPEDEFS + //@{ + //! divide by zero exception + class DivideByZero : public Exception + { + public: + DivideByZero() : Exception(OTHER_ERROR, "PolynomialMod2: division by zero") {} + }; + + typedef unsigned int RandomizationParameter; + //@} + + //! \name CREATORS + //@{ + //! creates the zero polynomial + PolynomialMod2(); + //! copy constructor + PolynomialMod2(const PolynomialMod2& t); + + //! convert from word + /*! value should be encoded with the least significant bit as coefficient to x^0 + and most significant bit as coefficient to x^(WORD_BITS-1) + bitLength denotes how much memory to allocate initially + */ + PolynomialMod2(word value, size_t bitLength=WORD_BITS); + + //! convert from big-endian byte array + PolynomialMod2(const byte *encodedPoly, size_t byteCount) + {Decode(encodedPoly, byteCount);} + + //! convert from big-endian form stored in a BufferedTransformation + PolynomialMod2(BufferedTransformation &encodedPoly, size_t byteCount) + {Decode(encodedPoly, byteCount);} + + //! create a random polynomial uniformly distributed over all polynomials with degree less than bitcount + PolynomialMod2(RandomNumberGenerator &rng, size_t bitcount) + {Randomize(rng, bitcount);} + + //! return x^i + static PolynomialMod2 CRYPTOPP_API Monomial(size_t i); + //! return x^t0 + x^t1 + x^t2 + static PolynomialMod2 CRYPTOPP_API Trinomial(size_t t0, size_t t1, size_t t2); + //! return x^t0 + x^t1 + x^t2 + x^t3 + x^t4 + static PolynomialMod2 CRYPTOPP_API Pentanomial(size_t t0, size_t t1, size_t t2, size_t t3, size_t t4); + //! return x^(n-1) + ... + x + 1 + static PolynomialMod2 CRYPTOPP_API AllOnes(size_t n); + + //! + static const PolynomialMod2 & CRYPTOPP_API Zero(); + //! + static const PolynomialMod2 & CRYPTOPP_API One(); + //@} + + //! \name ENCODE/DECODE + //@{ + //! minimum number of bytes to encode this polynomial + /*! MinEncodedSize of 0 is 1 */ + unsigned int MinEncodedSize() const {return STDMAX(1U, ByteCount());} + + //! encode in big-endian format + /*! if outputLen < MinEncodedSize, the most significant bytes will be dropped + if outputLen > MinEncodedSize, the most significant bytes will be padded + */ + void Encode(byte *output, size_t outputLen) const; + //! + void Encode(BufferedTransformation &bt, size_t outputLen) const; + + //! + void Decode(const byte *input, size_t inputLen); + //! + //* Precondition: bt.MaxRetrievable() >= inputLen + void Decode(BufferedTransformation &bt, size_t inputLen); + + //! encode value as big-endian octet string + void DEREncodeAsOctetString(BufferedTransformation &bt, size_t length) const; + //! decode value as big-endian octet string + void BERDecodeAsOctetString(BufferedTransformation &bt, size_t length); + //@} + + //! \name ACCESSORS + //@{ + //! number of significant bits = Degree() + 1 + unsigned int BitCount() const; + //! number of significant bytes = ceiling(BitCount()/8) + unsigned int ByteCount() const; + //! number of significant words = ceiling(ByteCount()/sizeof(word)) + unsigned int WordCount() const; + + //! return the n-th bit, n=0 being the least significant bit + bool GetBit(size_t n) const {return GetCoefficient(n)!=0;} + //! return the n-th byte + byte GetByte(size_t n) const; + + //! the zero polynomial will return a degree of -1 + signed int Degree() const {return BitCount()-1;} + //! degree + 1 + unsigned int CoefficientCount() const {return BitCount();} + //! return coefficient for x^i + int GetCoefficient(size_t i) const + {return (i/WORD_BITS < reg.size()) ? int(reg[i/WORD_BITS] >> (i % WORD_BITS)) & 1 : 0;} + //! return coefficient for x^i + int operator[](unsigned int i) const {return GetCoefficient(i);} + + //! + bool IsZero() const {return !*this;} + //! + bool Equals(const PolynomialMod2 &rhs) const; + //@} + + //! \name MANIPULATORS + //@{ + //! + PolynomialMod2& operator=(const PolynomialMod2& t); + //! + PolynomialMod2& operator&=(const PolynomialMod2& t); + //! + PolynomialMod2& operator^=(const PolynomialMod2& t); + //! + PolynomialMod2& operator+=(const PolynomialMod2& t) {return *this ^= t;} + //! + PolynomialMod2& operator-=(const PolynomialMod2& t) {return *this ^= t;} + //! + PolynomialMod2& operator*=(const PolynomialMod2& t); + //! + PolynomialMod2& operator/=(const PolynomialMod2& t); + //! + PolynomialMod2& operator%=(const PolynomialMod2& t); + //! + PolynomialMod2& operator<<=(unsigned int); + //! + PolynomialMod2& operator>>=(unsigned int); + + //! + void Randomize(RandomNumberGenerator &rng, size_t bitcount); + + //! + void SetBit(size_t i, int value = 1); + //! set the n-th byte to value + void SetByte(size_t n, byte value); + + //! + void SetCoefficient(size_t i, int value) {SetBit(i, value);} + + //! + void swap(PolynomialMod2 &a) {reg.swap(a.reg);} + //@} + + //! \name UNARY OPERATORS + //@{ + //! + bool operator!() const; + //! + PolynomialMod2 operator+() const {return *this;} + //! + PolynomialMod2 operator-() const {return *this;} + //@} + + //! \name BINARY OPERATORS + //@{ + //! + PolynomialMod2 And(const PolynomialMod2 &b) const; + //! + PolynomialMod2 Xor(const PolynomialMod2 &b) const; + //! + PolynomialMod2 Plus(const PolynomialMod2 &b) const {return Xor(b);} + //! + PolynomialMod2 Minus(const PolynomialMod2 &b) const {return Xor(b);} + //! + PolynomialMod2 Times(const PolynomialMod2 &b) const; + //! + PolynomialMod2 DividedBy(const PolynomialMod2 &b) const; + //! + PolynomialMod2 Modulo(const PolynomialMod2 &b) const; + + //! + PolynomialMod2 operator>>(unsigned int n) const; + //! + PolynomialMod2 operator<<(unsigned int n) const; + //@} + + //! \name OTHER ARITHMETIC FUNCTIONS + //@{ + //! sum modulo 2 of all coefficients + unsigned int Parity() const; + + //! check for irreducibility + bool IsIrreducible() const; + + //! is always zero since we're working modulo 2 + PolynomialMod2 Doubled() const {return Zero();} + //! + PolynomialMod2 Squared() const; + + //! only 1 is a unit + bool IsUnit() const {return Equals(One());} + //! return inverse if *this is a unit, otherwise return 0 + PolynomialMod2 MultiplicativeInverse() const {return IsUnit() ? One() : Zero();} + + //! greatest common divisor + static PolynomialMod2 CRYPTOPP_API Gcd(const PolynomialMod2 &a, const PolynomialMod2 &n); + //! calculate multiplicative inverse of *this mod n + PolynomialMod2 InverseMod(const PolynomialMod2 &) const; + + //! calculate r and q such that (a == d*q + r) && (deg(r) < deg(d)) + static void CRYPTOPP_API Divide(PolynomialMod2 &r, PolynomialMod2 &q, const PolynomialMod2 &a, const PolynomialMod2 &d); + //@} + + //! \name INPUT/OUTPUT + //@{ + //! + friend std::ostream& operator<<(std::ostream& out, const PolynomialMod2 &a); + //@} + +private: + friend class GF2NT; + + SecWordBlock reg; +}; + +//! +inline bool operator==(const CryptoPP::PolynomialMod2 &a, const CryptoPP::PolynomialMod2 &b) +{return a.Equals(b);} +//! +inline bool operator!=(const CryptoPP::PolynomialMod2 &a, const CryptoPP::PolynomialMod2 &b) +{return !(a==b);} +//! compares degree +inline bool operator> (const CryptoPP::PolynomialMod2 &a, const CryptoPP::PolynomialMod2 &b) +{return a.Degree() > b.Degree();} +//! compares degree +inline bool operator>=(const CryptoPP::PolynomialMod2 &a, const CryptoPP::PolynomialMod2 &b) +{return a.Degree() >= b.Degree();} +//! compares degree +inline bool operator< (const CryptoPP::PolynomialMod2 &a, const CryptoPP::PolynomialMod2 &b) +{return a.Degree() < b.Degree();} +//! compares degree +inline bool operator<=(const CryptoPP::PolynomialMod2 &a, const CryptoPP::PolynomialMod2 &b) +{return a.Degree() <= b.Degree();} +//! +inline CryptoPP::PolynomialMod2 operator&(const CryptoPP::PolynomialMod2 &a, const CryptoPP::PolynomialMod2 &b) {return a.And(b);} +//! +inline CryptoPP::PolynomialMod2 operator^(const CryptoPP::PolynomialMod2 &a, const CryptoPP::PolynomialMod2 &b) {return a.Xor(b);} +//! +inline CryptoPP::PolynomialMod2 operator+(const CryptoPP::PolynomialMod2 &a, const CryptoPP::PolynomialMod2 &b) {return a.Plus(b);} +//! +inline CryptoPP::PolynomialMod2 operator-(const CryptoPP::PolynomialMod2 &a, const CryptoPP::PolynomialMod2 &b) {return a.Minus(b);} +//! +inline CryptoPP::PolynomialMod2 operator*(const CryptoPP::PolynomialMod2 &a, const CryptoPP::PolynomialMod2 &b) {return a.Times(b);} +//! +inline CryptoPP::PolynomialMod2 operator/(const CryptoPP::PolynomialMod2 &a, const CryptoPP::PolynomialMod2 &b) {return a.DividedBy(b);} +//! +inline CryptoPP::PolynomialMod2 operator%(const CryptoPP::PolynomialMod2 &a, const CryptoPP::PolynomialMod2 &b) {return a.Modulo(b);} + +// CodeWarrior 8 workaround: put these template instantiations after overloaded operator declarations, +// but before the use of QuotientRing<EuclideanDomainOf<PolynomialMod2> > for VC .NET 2003 +CRYPTOPP_DLL_TEMPLATE_CLASS AbstractGroup<PolynomialMod2>; +CRYPTOPP_DLL_TEMPLATE_CLASS AbstractRing<PolynomialMod2>; +CRYPTOPP_DLL_TEMPLATE_CLASS AbstractEuclideanDomain<PolynomialMod2>; +CRYPTOPP_DLL_TEMPLATE_CLASS EuclideanDomainOf<PolynomialMod2>; +CRYPTOPP_DLL_TEMPLATE_CLASS QuotientRing<EuclideanDomainOf<PolynomialMod2> >; + +//! GF(2^n) with Polynomial Basis +class CRYPTOPP_DLL GF2NP : public QuotientRing<EuclideanDomainOf<PolynomialMod2> > +{ +public: + GF2NP(const PolynomialMod2 &modulus); + + virtual GF2NP * Clone() const {return new GF2NP(*this);} + virtual void DEREncode(BufferedTransformation &bt) const + {assert(false);} // no ASN.1 syntax yet for general polynomial basis + + void DEREncodeElement(BufferedTransformation &out, const Element &a) const; + void BERDecodeElement(BufferedTransformation &in, Element &a) const; + + bool Equal(const Element &a, const Element &b) const + {assert(a.Degree() < m_modulus.Degree() && b.Degree() < m_modulus.Degree()); return a.Equals(b);} + + bool IsUnit(const Element &a) const + {assert(a.Degree() < m_modulus.Degree()); return !!a;} + + unsigned int MaxElementBitLength() const + {return m;} + + unsigned int MaxElementByteLength() const + {return (unsigned int)BitsToBytes(MaxElementBitLength());} + + Element SquareRoot(const Element &a) const; + + Element HalfTrace(const Element &a) const; + + // returns z such that z^2 + z == a + Element SolveQuadraticEquation(const Element &a) const; + +protected: + unsigned int m; +}; + +//! GF(2^n) with Trinomial Basis +class CRYPTOPP_DLL GF2NT : public GF2NP +{ +public: + // polynomial modulus = x^t0 + x^t1 + x^t2, t0 > t1 > t2 + GF2NT(unsigned int t0, unsigned int t1, unsigned int t2); + + GF2NP * Clone() const {return new GF2NT(*this);} + void DEREncode(BufferedTransformation &bt) const; + + const Element& Multiply(const Element &a, const Element &b) const; + + const Element& Square(const Element &a) const + {return Reduced(a.Squared());} + + const Element& MultiplicativeInverse(const Element &a) const; + +private: + const Element& Reduced(const Element &a) const; + + unsigned int t0, t1; + mutable PolynomialMod2 result; +}; + +//! GF(2^n) with Pentanomial Basis +class CRYPTOPP_DLL GF2NPP : public GF2NP +{ +public: + // polynomial modulus = x^t0 + x^t1 + x^t2 + x^t3 + x^t4, t0 > t1 > t2 > t3 > t4 + GF2NPP(unsigned int t0, unsigned int t1, unsigned int t2, unsigned int t3, unsigned int t4) + : GF2NP(PolynomialMod2::Pentanomial(t0, t1, t2, t3, t4)), t0(t0), t1(t1), t2(t2), t3(t3) {} + + GF2NP * Clone() const {return new GF2NPP(*this);} + void DEREncode(BufferedTransformation &bt) const; + +private: + unsigned int t0, t1, t2, t3; +}; + +// construct new GF2NP from the ASN.1 sequence Characteristic-two +CRYPTOPP_DLL GF2NP * CRYPTOPP_API BERDecodeGF2NP(BufferedTransformation &bt); + +NAMESPACE_END + +#ifndef __BORLANDC__ +NAMESPACE_BEGIN(std) +template<> inline void swap(CryptoPP::PolynomialMod2 &a, CryptoPP::PolynomialMod2 &b) +{ + a.swap(b); +} +NAMESPACE_END +#endif + +#endif |