summaryrefslogtreecommitdiffstats
path: root/cryptopp562/algebra.h
diff options
context:
space:
mode:
Diffstat (limited to 'cryptopp562/algebra.h')
-rw-r--r--cryptopp562/algebra.h285
1 files changed, 285 insertions, 0 deletions
diff --git a/cryptopp562/algebra.h b/cryptopp562/algebra.h
new file mode 100644
index 0000000..13038bd
--- /dev/null
+++ b/cryptopp562/algebra.h
@@ -0,0 +1,285 @@
+#ifndef CRYPTOPP_ALGEBRA_H
+#define CRYPTOPP_ALGEBRA_H
+
+#include "config.h"
+
+NAMESPACE_BEGIN(CryptoPP)
+
+class Integer;
+
+// "const Element&" returned by member functions are references
+// to internal data members. Since each object may have only
+// one such data member for holding results, the following code
+// will produce incorrect results:
+// abcd = group.Add(group.Add(a,b), group.Add(c,d));
+// But this should be fine:
+// abcd = group.Add(a, group.Add(b, group.Add(c,d));
+
+//! Abstract Group
+template <class T> class CRYPTOPP_NO_VTABLE AbstractGroup
+{
+public:
+ typedef T Element;
+
+ virtual ~AbstractGroup() {}
+
+ virtual bool Equal(const Element &a, const Element &b) const =0;
+ virtual const Element& Identity() const =0;
+ virtual const Element& Add(const Element &a, const Element &b) const =0;
+ virtual const Element& Inverse(const Element &a) const =0;
+ virtual bool InversionIsFast() const {return false;}
+
+ virtual const Element& Double(const Element &a) const;
+ virtual const Element& Subtract(const Element &a, const Element &b) const;
+ virtual Element& Accumulate(Element &a, const Element &b) const;
+ virtual Element& Reduce(Element &a, const Element &b) const;
+
+ virtual Element ScalarMultiply(const Element &a, const Integer &e) const;
+ virtual Element CascadeScalarMultiply(const Element &x, const Integer &e1, const Element &y, const Integer &e2) const;
+
+ virtual void SimultaneousMultiply(Element *results, const Element &base, const Integer *exponents, unsigned int exponentsCount) const;
+};
+
+//! Abstract Ring
+template <class T> class CRYPTOPP_NO_VTABLE AbstractRing : public AbstractGroup<T>
+{
+public:
+ typedef T Element;
+
+ AbstractRing() {m_mg.m_pRing = this;}
+ AbstractRing(const AbstractRing &source) {m_mg.m_pRing = this;}
+ AbstractRing& operator=(const AbstractRing &source) {return *this;}
+
+ virtual bool IsUnit(const Element &a) const =0;
+ virtual const Element& MultiplicativeIdentity() const =0;
+ virtual const Element& Multiply(const Element &a, const Element &b) const =0;
+ virtual const Element& MultiplicativeInverse(const Element &a) const =0;
+
+ virtual const Element& Square(const Element &a) const;
+ virtual const Element& Divide(const Element &a, const Element &b) const;
+
+ virtual Element Exponentiate(const Element &a, const Integer &e) const;
+ virtual Element CascadeExponentiate(const Element &x, const Integer &e1, const Element &y, const Integer &e2) const;
+
+ virtual void SimultaneousExponentiate(Element *results, const Element &base, const Integer *exponents, unsigned int exponentsCount) const;
+
+ virtual const AbstractGroup<T>& MultiplicativeGroup() const
+ {return m_mg;}
+
+private:
+ class MultiplicativeGroupT : public AbstractGroup<T>
+ {
+ public:
+ const AbstractRing<T>& GetRing() const
+ {return *m_pRing;}
+
+ bool Equal(const Element &a, const Element &b) const
+ {return GetRing().Equal(a, b);}
+
+ const Element& Identity() const
+ {return GetRing().MultiplicativeIdentity();}
+
+ const Element& Add(const Element &a, const Element &b) const
+ {return GetRing().Multiply(a, b);}
+
+ Element& Accumulate(Element &a, const Element &b) const
+ {return a = GetRing().Multiply(a, b);}
+
+ const Element& Inverse(const Element &a) const
+ {return GetRing().MultiplicativeInverse(a);}
+
+ const Element& Subtract(const Element &a, const Element &b) const
+ {return GetRing().Divide(a, b);}
+
+ Element& Reduce(Element &a, const Element &b) const
+ {return a = GetRing().Divide(a, b);}
+
+ const Element& Double(const Element &a) const
+ {return GetRing().Square(a);}
+
+ Element ScalarMultiply(const Element &a, const Integer &e) const
+ {return GetRing().Exponentiate(a, e);}
+
+ Element CascadeScalarMultiply(const Element &x, const Integer &e1, const Element &y, const Integer &e2) const
+ {return GetRing().CascadeExponentiate(x, e1, y, e2);}
+
+ void SimultaneousMultiply(Element *results, const Element &base, const Integer *exponents, unsigned int exponentsCount) const
+ {GetRing().SimultaneousExponentiate(results, base, exponents, exponentsCount);}
+
+ const AbstractRing<T> *m_pRing;
+ };
+
+ MultiplicativeGroupT m_mg;
+};
+
+// ********************************************************
+
+//! Base and Exponent
+template <class T, class E = Integer>
+struct BaseAndExponent
+{
+public:
+ BaseAndExponent() {}
+ BaseAndExponent(const T &base, const E &exponent) : base(base), exponent(exponent) {}
+ bool operator<(const BaseAndExponent<T, E> &rhs) const {return exponent < rhs.exponent;}
+ T base;
+ E exponent;
+};
+
+// VC60 workaround: incomplete member template support
+template <class Element, class Iterator>
+ Element GeneralCascadeMultiplication(const AbstractGroup<Element> &group, Iterator begin, Iterator end);
+template <class Element, class Iterator>
+ Element GeneralCascadeExponentiation(const AbstractRing<Element> &ring, Iterator begin, Iterator end);
+
+// ********************************************************
+
+//! Abstract Euclidean Domain
+template <class T> class CRYPTOPP_NO_VTABLE AbstractEuclideanDomain : public AbstractRing<T>
+{
+public:
+ typedef T Element;
+
+ virtual void DivisionAlgorithm(Element &r, Element &q, const Element &a, const Element &d) const =0;
+
+ virtual const Element& Mod(const Element &a, const Element &b) const =0;
+ virtual const Element& Gcd(const Element &a, const Element &b) const;
+
+protected:
+ mutable Element result;
+};
+
+// ********************************************************
+
+//! EuclideanDomainOf
+template <class T> class EuclideanDomainOf : public AbstractEuclideanDomain<T>
+{
+public:
+ typedef T Element;
+
+ EuclideanDomainOf() {}
+
+ bool Equal(const Element &a, const Element &b) const
+ {return a==b;}
+
+ const Element& Identity() const
+ {return Element::Zero();}
+
+ const Element& Add(const Element &a, const Element &b) const
+ {return result = a+b;}
+
+ Element& Accumulate(Element &a, const Element &b) const
+ {return a+=b;}
+
+ const Element& Inverse(const Element &a) const
+ {return result = -a;}
+
+ const Element& Subtract(const Element &a, const Element &b) const
+ {return result = a-b;}
+
+ Element& Reduce(Element &a, const Element &b) const
+ {return a-=b;}
+
+ const Element& Double(const Element &a) const
+ {return result = a.Doubled();}
+
+ const Element& MultiplicativeIdentity() const
+ {return Element::One();}
+
+ const Element& Multiply(const Element &a, const Element &b) const
+ {return result = a*b;}
+
+ const Element& Square(const Element &a) const
+ {return result = a.Squared();}
+
+ bool IsUnit(const Element &a) const
+ {return a.IsUnit();}
+
+ const Element& MultiplicativeInverse(const Element &a) const
+ {return result = a.MultiplicativeInverse();}
+
+ const Element& Divide(const Element &a, const Element &b) const
+ {return result = a/b;}
+
+ const Element& Mod(const Element &a, const Element &b) const
+ {return result = a%b;}
+
+ void DivisionAlgorithm(Element &r, Element &q, const Element &a, const Element &d) const
+ {Element::Divide(r, q, a, d);}
+
+ bool operator==(const EuclideanDomainOf<T> &rhs) const
+ {return true;}
+
+private:
+ mutable Element result;
+};
+
+//! Quotient Ring
+template <class T> class QuotientRing : public AbstractRing<typename T::Element>
+{
+public:
+ typedef T EuclideanDomain;
+ typedef typename T::Element Element;
+
+ QuotientRing(const EuclideanDomain &domain, const Element &modulus)
+ : m_domain(domain), m_modulus(modulus) {}
+
+ const EuclideanDomain & GetDomain() const
+ {return m_domain;}
+
+ const Element& GetModulus() const
+ {return m_modulus;}
+
+ bool Equal(const Element &a, const Element &b) const
+ {return m_domain.Equal(m_domain.Mod(m_domain.Subtract(a, b), m_modulus), m_domain.Identity());}
+
+ const Element& Identity() const
+ {return m_domain.Identity();}
+
+ const Element& Add(const Element &a, const Element &b) const
+ {return m_domain.Add(a, b);}
+
+ Element& Accumulate(Element &a, const Element &b) const
+ {return m_domain.Accumulate(a, b);}
+
+ const Element& Inverse(const Element &a) const
+ {return m_domain.Inverse(a);}
+
+ const Element& Subtract(const Element &a, const Element &b) const
+ {return m_domain.Subtract(a, b);}
+
+ Element& Reduce(Element &a, const Element &b) const
+ {return m_domain.Reduce(a, b);}
+
+ const Element& Double(const Element &a) const
+ {return m_domain.Double(a);}
+
+ bool IsUnit(const Element &a) const
+ {return m_domain.IsUnit(m_domain.Gcd(a, m_modulus));}
+
+ const Element& MultiplicativeIdentity() const
+ {return m_domain.MultiplicativeIdentity();}
+
+ const Element& Multiply(const Element &a, const Element &b) const
+ {return m_domain.Mod(m_domain.Multiply(a, b), m_modulus);}
+
+ const Element& Square(const Element &a) const
+ {return m_domain.Mod(m_domain.Square(a), m_modulus);}
+
+ const Element& MultiplicativeInverse(const Element &a) const;
+
+ bool operator==(const QuotientRing<T> &rhs) const
+ {return m_domain == rhs.m_domain && m_modulus == rhs.m_modulus;}
+
+protected:
+ EuclideanDomain m_domain;
+ Element m_modulus;
+};
+
+NAMESPACE_END
+
+#ifdef CRYPTOPP_MANUALLY_INSTANTIATE_TEMPLATES
+#include "algebra.cpp"
+#endif
+
+#endif