summaryrefslogtreecommitdiffstats
path: root/cryptopp562/polynomi.h
diff options
context:
space:
mode:
authorMalfurious <m@lfurio.us>2024-10-24 06:44:24 -0400
committerMalfurious <m@lfurio.us>2024-10-24 06:44:24 -0400
commit512aa4c77b3dc0d72db713a9215ff65a98a99ec3 (patch)
tree6db82e0109dc987b5b021f81d4e8a0926eb75ff7 /cryptopp562/polynomi.h
parent428471d39fb8c205a9fad899c88c30a2cb7df685 (diff)
parent10affea371406c0ae4c080e5a19390a8e9bd154b (diff)
downloadcompass-512aa4c77b3dc0d72db713a9215ff65a98a99ec3.tar.gz
compass-512aa4c77b3dc0d72db713a9215ff65a98a99ec3.zip
Merge branch 'mbedtls'
Replace Crypto++ 5.6.2 with Mbed TLS 3.6.0 Newer compilers are starting to show the age of the crypto library we've been using, as it is sometimes a pain to recompile compass lately. So, the tracked version of Crypto++ was at least due for an upgrade. However, I plan to soon begin reimplementing compass in C. So, I'm taking this opportunity to first just migrate the cryptography library to a newer C alternative. This branch does so, and integrates its use into the current C++ version of compass. * mbedtls: Remove unnecessary exception handler catch block Refactor random password generation to use mbedtls entropy source Refactor SHA256 function to use mbedtls Refactor AES functions to use mbedtls Add Mbedtls library Remove Crypto++ library
Diffstat (limited to 'cryptopp562/polynomi.h')
-rw-r--r--cryptopp562/polynomi.h459
1 files changed, 0 insertions, 459 deletions
diff --git a/cryptopp562/polynomi.h b/cryptopp562/polynomi.h
deleted file mode 100644
index cddadae..0000000
--- a/cryptopp562/polynomi.h
+++ /dev/null
@@ -1,459 +0,0 @@
-#ifndef CRYPTOPP_POLYNOMI_H
-#define CRYPTOPP_POLYNOMI_H
-
-/*! \file */
-
-#include "cryptlib.h"
-#include "misc.h"
-#include "algebra.h"
-
-#include <iosfwd>
-#include <vector>
-
-NAMESPACE_BEGIN(CryptoPP)
-
-//! represents single-variable polynomials over arbitrary rings
-/*! \nosubgrouping */
-template <class T> class PolynomialOver
-{
-public:
- //! \name ENUMS, EXCEPTIONS, and TYPEDEFS
- //@{
- //! division by zero exception
- class DivideByZero : public Exception
- {
- public:
- DivideByZero() : Exception(OTHER_ERROR, "PolynomialOver<T>: division by zero") {}
- };
-
- //! specify the distribution for randomization functions
- class RandomizationParameter
- {
- public:
- RandomizationParameter(unsigned int coefficientCount, const typename T::RandomizationParameter &coefficientParameter )
- : m_coefficientCount(coefficientCount), m_coefficientParameter(coefficientParameter) {}
-
- private:
- unsigned int m_coefficientCount;
- typename T::RandomizationParameter m_coefficientParameter;
- friend class PolynomialOver<T>;
- };
-
- typedef T Ring;
- typedef typename T::Element CoefficientType;
- //@}
-
- //! \name CREATORS
- //@{
- //! creates the zero polynomial
- PolynomialOver() {}
-
- //!
- PolynomialOver(const Ring &ring, unsigned int count)
- : m_coefficients((size_t)count, ring.Identity()) {}
-
- //! copy constructor
- PolynomialOver(const PolynomialOver<Ring> &t)
- : m_coefficients(t.m_coefficients.size()) {*this = t;}
-
- //! construct constant polynomial
- PolynomialOver(const CoefficientType &element)
- : m_coefficients(1, element) {}
-
- //! construct polynomial with specified coefficients, starting from coefficient of x^0
- template <typename Iterator> PolynomialOver(Iterator begin, Iterator end)
- : m_coefficients(begin, end) {}
-
- //! convert from string
- PolynomialOver(const char *str, const Ring &ring) {FromStr(str, ring);}
-
- //! convert from big-endian byte array
- PolynomialOver(const byte *encodedPolynomialOver, unsigned int byteCount);
-
- //! convert from Basic Encoding Rules encoded byte array
- explicit PolynomialOver(const byte *BEREncodedPolynomialOver);
-
- //! convert from BER encoded byte array stored in a BufferedTransformation object
- explicit PolynomialOver(BufferedTransformation &bt);
-
- //! create a random PolynomialOver<T>
- PolynomialOver(RandomNumberGenerator &rng, const RandomizationParameter &parameter, const Ring &ring)
- {Randomize(rng, parameter, ring);}
- //@}
-
- //! \name ACCESSORS
- //@{
- //! the zero polynomial will return a degree of -1
- int Degree(const Ring &ring) const {return int(CoefficientCount(ring))-1;}
- //!
- unsigned int CoefficientCount(const Ring &ring) const;
- //! return coefficient for x^i
- CoefficientType GetCoefficient(unsigned int i, const Ring &ring) const;
- //@}
-
- //! \name MANIPULATORS
- //@{
- //!
- PolynomialOver<Ring>& operator=(const PolynomialOver<Ring>& t);
-
- //!
- void Randomize(RandomNumberGenerator &rng, const RandomizationParameter &parameter, const Ring &ring);
-
- //! set the coefficient for x^i to value
- void SetCoefficient(unsigned int i, const CoefficientType &value, const Ring &ring);
-
- //!
- void Negate(const Ring &ring);
-
- //!
- void swap(PolynomialOver<Ring> &t);
- //@}
-
-
- //! \name BASIC ARITHMETIC ON POLYNOMIALS
- //@{
- bool Equals(const PolynomialOver<Ring> &t, const Ring &ring) const;
- bool IsZero(const Ring &ring) const {return CoefficientCount(ring)==0;}
-
- PolynomialOver<Ring> Plus(const PolynomialOver<Ring>& t, const Ring &ring) const;
- PolynomialOver<Ring> Minus(const PolynomialOver<Ring>& t, const Ring &ring) const;
- PolynomialOver<Ring> Inverse(const Ring &ring) const;
-
- PolynomialOver<Ring> Times(const PolynomialOver<Ring>& t, const Ring &ring) const;
- PolynomialOver<Ring> DividedBy(const PolynomialOver<Ring>& t, const Ring &ring) const;
- PolynomialOver<Ring> Modulo(const PolynomialOver<Ring>& t, const Ring &ring) const;
- PolynomialOver<Ring> MultiplicativeInverse(const Ring &ring) const;
- bool IsUnit(const Ring &ring) const;
-
- PolynomialOver<Ring>& Accumulate(const PolynomialOver<Ring>& t, const Ring &ring);
- PolynomialOver<Ring>& Reduce(const PolynomialOver<Ring>& t, const Ring &ring);
-
- //!
- PolynomialOver<Ring> Doubled(const Ring &ring) const {return Plus(*this, ring);}
- //!
- PolynomialOver<Ring> Squared(const Ring &ring) const {return Times(*this, ring);}
-
- CoefficientType EvaluateAt(const CoefficientType &x, const Ring &ring) const;
-
- PolynomialOver<Ring>& ShiftLeft(unsigned int n, const Ring &ring);
- PolynomialOver<Ring>& ShiftRight(unsigned int n, const Ring &ring);
-
- //! calculate r and q such that (a == d*q + r) && (0 <= degree of r < degree of d)
- static void Divide(PolynomialOver<Ring> &r, PolynomialOver<Ring> &q, const PolynomialOver<Ring> &a, const PolynomialOver<Ring> &d, const Ring &ring);
- //@}
-
- //! \name INPUT/OUTPUT
- //@{
- std::istream& Input(std::istream &in, const Ring &ring);
- std::ostream& Output(std::ostream &out, const Ring &ring) const;
- //@}
-
-private:
- void FromStr(const char *str, const Ring &ring);
-
- std::vector<CoefficientType> m_coefficients;
-};
-
-//! Polynomials over a fixed ring
-/*! Having a fixed ring allows overloaded operators */
-template <class T, int instance> class PolynomialOverFixedRing : private PolynomialOver<T>
-{
- typedef PolynomialOver<T> B;
- typedef PolynomialOverFixedRing<T, instance> ThisType;
-
-public:
- typedef T Ring;
- typedef typename T::Element CoefficientType;
- typedef typename B::DivideByZero DivideByZero;
- typedef typename B::RandomizationParameter RandomizationParameter;
-
- //! \name CREATORS
- //@{
- //! creates the zero polynomial
- PolynomialOverFixedRing(unsigned int count = 0) : B(ms_fixedRing, count) {}
-
- //! copy constructor
- PolynomialOverFixedRing(const ThisType &t) : B(t) {}
-
- explicit PolynomialOverFixedRing(const B &t) : B(t) {}
-
- //! construct constant polynomial
- PolynomialOverFixedRing(const CoefficientType &element) : B(element) {}
-
- //! construct polynomial with specified coefficients, starting from coefficient of x^0
- template <typename Iterator> PolynomialOverFixedRing(Iterator first, Iterator last)
- : B(first, last) {}
-
- //! convert from string
- explicit PolynomialOverFixedRing(const char *str) : B(str, ms_fixedRing) {}
-
- //! convert from big-endian byte array
- PolynomialOverFixedRing(const byte *encodedPoly, unsigned int byteCount) : B(encodedPoly, byteCount) {}
-
- //! convert from Basic Encoding Rules encoded byte array
- explicit PolynomialOverFixedRing(const byte *BEREncodedPoly) : B(BEREncodedPoly) {}
-
- //! convert from BER encoded byte array stored in a BufferedTransformation object
- explicit PolynomialOverFixedRing(BufferedTransformation &bt) : B(bt) {}
-
- //! create a random PolynomialOverFixedRing
- PolynomialOverFixedRing(RandomNumberGenerator &rng, const RandomizationParameter &parameter) : B(rng, parameter, ms_fixedRing) {}
-
- static const ThisType &Zero();
- static const ThisType &One();
- //@}
-
- //! \name ACCESSORS
- //@{
- //! the zero polynomial will return a degree of -1
- int Degree() const {return B::Degree(ms_fixedRing);}
- //! degree + 1
- unsigned int CoefficientCount() const {return B::CoefficientCount(ms_fixedRing);}
- //! return coefficient for x^i
- CoefficientType GetCoefficient(unsigned int i) const {return B::GetCoefficient(i, ms_fixedRing);}
- //! return coefficient for x^i
- CoefficientType operator[](unsigned int i) const {return B::GetCoefficient(i, ms_fixedRing);}
- //@}
-
- //! \name MANIPULATORS
- //@{
- //!
- ThisType& operator=(const ThisType& t) {B::operator=(t); return *this;}
- //!
- ThisType& operator+=(const ThisType& t) {Accumulate(t, ms_fixedRing); return *this;}
- //!
- ThisType& operator-=(const ThisType& t) {Reduce(t, ms_fixedRing); return *this;}
- //!
- ThisType& operator*=(const ThisType& t) {return *this = *this*t;}
- //!
- ThisType& operator/=(const ThisType& t) {return *this = *this/t;}
- //!
- ThisType& operator%=(const ThisType& t) {return *this = *this%t;}
-
- //!
- ThisType& operator<<=(unsigned int n) {ShiftLeft(n, ms_fixedRing); return *this;}
- //!
- ThisType& operator>>=(unsigned int n) {ShiftRight(n, ms_fixedRing); return *this;}
-
- //! set the coefficient for x^i to value
- void SetCoefficient(unsigned int i, const CoefficientType &value) {B::SetCoefficient(i, value, ms_fixedRing);}
-
- //!
- void Randomize(RandomNumberGenerator &rng, const RandomizationParameter &parameter) {B::Randomize(rng, parameter, ms_fixedRing);}
-
- //!
- void Negate() {B::Negate(ms_fixedRing);}
-
- void swap(ThisType &t) {B::swap(t);}
- //@}
-
- //! \name UNARY OPERATORS
- //@{
- //!
- bool operator!() const {return CoefficientCount()==0;}
- //!
- ThisType operator+() const {return *this;}
- //!
- ThisType operator-() const {return ThisType(Inverse(ms_fixedRing));}
- //@}
-
- //! \name BINARY OPERATORS
- //@{
- //!
- friend ThisType operator>>(ThisType a, unsigned int n) {return ThisType(a>>=n);}
- //!
- friend ThisType operator<<(ThisType a, unsigned int n) {return ThisType(a<<=n);}
- //@}
-
- //! \name OTHER ARITHMETIC FUNCTIONS
- //@{
- //!
- ThisType MultiplicativeInverse() const {return ThisType(B::MultiplicativeInverse(ms_fixedRing));}
- //!
- bool IsUnit() const {return B::IsUnit(ms_fixedRing);}
-
- //!
- ThisType Doubled() const {return ThisType(B::Doubled(ms_fixedRing));}
- //!
- ThisType Squared() const {return ThisType(B::Squared(ms_fixedRing));}
-
- CoefficientType EvaluateAt(const CoefficientType &x) const {return B::EvaluateAt(x, ms_fixedRing);}
-
- //! calculate r and q such that (a == d*q + r) && (0 <= r < abs(d))
- static void Divide(ThisType &r, ThisType &q, const ThisType &a, const ThisType &d)
- {B::Divide(r, q, a, d, ms_fixedRing);}
- //@}
-
- //! \name INPUT/OUTPUT
- //@{
- //!
- friend std::istream& operator>>(std::istream& in, ThisType &a)
- {return a.Input(in, ms_fixedRing);}
- //!
- friend std::ostream& operator<<(std::ostream& out, const ThisType &a)
- {return a.Output(out, ms_fixedRing);}
- //@}
-
-private:
- struct NewOnePolynomial
- {
- ThisType * operator()() const
- {
- return new ThisType(ms_fixedRing.MultiplicativeIdentity());
- }
- };
-
- static const Ring ms_fixedRing;
-};
-
-//! Ring of polynomials over another ring
-template <class T> class RingOfPolynomialsOver : public AbstractEuclideanDomain<PolynomialOver<T> >
-{
-public:
- typedef T CoefficientRing;
- typedef PolynomialOver<T> Element;
- typedef typename Element::CoefficientType CoefficientType;
- typedef typename Element::RandomizationParameter RandomizationParameter;
-
- RingOfPolynomialsOver(const CoefficientRing &ring) : m_ring(ring) {}
-
- Element RandomElement(RandomNumberGenerator &rng, const RandomizationParameter &parameter)
- {return Element(rng, parameter, m_ring);}
-
- bool Equal(const Element &a, const Element &b) const
- {return a.Equals(b, m_ring);}
-
- const Element& Identity() const
- {return this->result = m_ring.Identity();}
-
- const Element& Add(const Element &a, const Element &b) const
- {return this->result = a.Plus(b, m_ring);}
-
- Element& Accumulate(Element &a, const Element &b) const
- {a.Accumulate(b, m_ring); return a;}
-
- const Element& Inverse(const Element &a) const
- {return this->result = a.Inverse(m_ring);}
-
- const Element& Subtract(const Element &a, const Element &b) const
- {return this->result = a.Minus(b, m_ring);}
-
- Element& Reduce(Element &a, const Element &b) const
- {return a.Reduce(b, m_ring);}
-
- const Element& Double(const Element &a) const
- {return this->result = a.Doubled(m_ring);}
-
- const Element& MultiplicativeIdentity() const
- {return this->result = m_ring.MultiplicativeIdentity();}
-
- const Element& Multiply(const Element &a, const Element &b) const
- {return this->result = a.Times(b, m_ring);}
-
- const Element& Square(const Element &a) const
- {return this->result = a.Squared(m_ring);}
-
- bool IsUnit(const Element &a) const
- {return a.IsUnit(m_ring);}
-
- const Element& MultiplicativeInverse(const Element &a) const
- {return this->result = a.MultiplicativeInverse(m_ring);}
-
- const Element& Divide(const Element &a, const Element &b) const
- {return this->result = a.DividedBy(b, m_ring);}
-
- const Element& Mod(const Element &a, const Element &b) const
- {return this->result = a.Modulo(b, m_ring);}
-
- void DivisionAlgorithm(Element &r, Element &q, const Element &a, const Element &d) const
- {Element::Divide(r, q, a, d, m_ring);}
-
- class InterpolationFailed : public Exception
- {
- public:
- InterpolationFailed() : Exception(OTHER_ERROR, "RingOfPolynomialsOver<T>: interpolation failed") {}
- };
-
- Element Interpolate(const CoefficientType x[], const CoefficientType y[], unsigned int n) const;
-
- // a faster version of Interpolate(x, y, n).EvaluateAt(position)
- CoefficientType InterpolateAt(const CoefficientType &position, const CoefficientType x[], const CoefficientType y[], unsigned int n) const;
-/*
- void PrepareBulkInterpolation(CoefficientType *w, const CoefficientType x[], unsigned int n) const;
- void PrepareBulkInterpolationAt(CoefficientType *v, const CoefficientType &position, const CoefficientType x[], const CoefficientType w[], unsigned int n) const;
- CoefficientType BulkInterpolateAt(const CoefficientType y[], const CoefficientType v[], unsigned int n) const;
-*/
-protected:
- void CalculateAlpha(std::vector<CoefficientType> &alpha, const CoefficientType x[], const CoefficientType y[], unsigned int n) const;
-
- CoefficientRing m_ring;
-};
-
-template <class Ring, class Element>
-void PrepareBulkPolynomialInterpolation(const Ring &ring, Element *w, const Element x[], unsigned int n);
-template <class Ring, class Element>
-void PrepareBulkPolynomialInterpolationAt(const Ring &ring, Element *v, const Element &position, const Element x[], const Element w[], unsigned int n);
-template <class Ring, class Element>
-Element BulkPolynomialInterpolateAt(const Ring &ring, const Element y[], const Element v[], unsigned int n);
-
-//!
-template <class T, int instance>
-inline bool operator==(const CryptoPP::PolynomialOverFixedRing<T, instance> &a, const CryptoPP::PolynomialOverFixedRing<T, instance> &b)
- {return a.Equals(b, a.ms_fixedRing);}
-//!
-template <class T, int instance>
-inline bool operator!=(const CryptoPP::PolynomialOverFixedRing<T, instance> &a, const CryptoPP::PolynomialOverFixedRing<T, instance> &b)
- {return !(a==b);}
-
-//!
-template <class T, int instance>
-inline bool operator> (const CryptoPP::PolynomialOverFixedRing<T, instance> &a, const CryptoPP::PolynomialOverFixedRing<T, instance> &b)
- {return a.Degree() > b.Degree();}
-//!
-template <class T, int instance>
-inline bool operator>=(const CryptoPP::PolynomialOverFixedRing<T, instance> &a, const CryptoPP::PolynomialOverFixedRing<T, instance> &b)
- {return a.Degree() >= b.Degree();}
-//!
-template <class T, int instance>
-inline bool operator< (const CryptoPP::PolynomialOverFixedRing<T, instance> &a, const CryptoPP::PolynomialOverFixedRing<T, instance> &b)
- {return a.Degree() < b.Degree();}
-//!
-template <class T, int instance>
-inline bool operator<=(const CryptoPP::PolynomialOverFixedRing<T, instance> &a, const CryptoPP::PolynomialOverFixedRing<T, instance> &b)
- {return a.Degree() <= b.Degree();}
-
-//!
-template <class T, int instance>
-inline CryptoPP::PolynomialOverFixedRing<T, instance> operator+(const CryptoPP::PolynomialOverFixedRing<T, instance> &a, const CryptoPP::PolynomialOverFixedRing<T, instance> &b)
- {return CryptoPP::PolynomialOverFixedRing<T, instance>(a.Plus(b, a.ms_fixedRing));}
-//!
-template <class T, int instance>
-inline CryptoPP::PolynomialOverFixedRing<T, instance> operator-(const CryptoPP::PolynomialOverFixedRing<T, instance> &a, const CryptoPP::PolynomialOverFixedRing<T, instance> &b)
- {return CryptoPP::PolynomialOverFixedRing<T, instance>(a.Minus(b, a.ms_fixedRing));}
-//!
-template <class T, int instance>
-inline CryptoPP::PolynomialOverFixedRing<T, instance> operator*(const CryptoPP::PolynomialOverFixedRing<T, instance> &a, const CryptoPP::PolynomialOverFixedRing<T, instance> &b)
- {return CryptoPP::PolynomialOverFixedRing<T, instance>(a.Times(b, a.ms_fixedRing));}
-//!
-template <class T, int instance>
-inline CryptoPP::PolynomialOverFixedRing<T, instance> operator/(const CryptoPP::PolynomialOverFixedRing<T, instance> &a, const CryptoPP::PolynomialOverFixedRing<T, instance> &b)
- {return CryptoPP::PolynomialOverFixedRing<T, instance>(a.DividedBy(b, a.ms_fixedRing));}
-//!
-template <class T, int instance>
-inline CryptoPP::PolynomialOverFixedRing<T, instance> operator%(const CryptoPP::PolynomialOverFixedRing<T, instance> &a, const CryptoPP::PolynomialOverFixedRing<T, instance> &b)
- {return CryptoPP::PolynomialOverFixedRing<T, instance>(a.Modulo(b, a.ms_fixedRing));}
-
-NAMESPACE_END
-
-NAMESPACE_BEGIN(std)
-template<class T> inline void swap(CryptoPP::PolynomialOver<T> &a, CryptoPP::PolynomialOver<T> &b)
-{
- a.swap(b);
-}
-template<class T, int i> inline void swap(CryptoPP::PolynomialOverFixedRing<T,i> &a, CryptoPP::PolynomialOverFixedRing<T,i> &b)
-{
- a.swap(b);
-}
-NAMESPACE_END
-
-#endif