summaryrefslogtreecommitdiffstats
path: root/cryptopp562/gf2n.h
diff options
context:
space:
mode:
authorMalfurious <m@lfurio.us>2024-10-24 06:44:24 -0400
committerMalfurious <m@lfurio.us>2024-10-24 06:44:24 -0400
commit512aa4c77b3dc0d72db713a9215ff65a98a99ec3 (patch)
tree6db82e0109dc987b5b021f81d4e8a0926eb75ff7 /cryptopp562/gf2n.h
parent428471d39fb8c205a9fad899c88c30a2cb7df685 (diff)
parent10affea371406c0ae4c080e5a19390a8e9bd154b (diff)
downloadcompass-512aa4c77b3dc0d72db713a9215ff65a98a99ec3.tar.gz
compass-512aa4c77b3dc0d72db713a9215ff65a98a99ec3.zip
Merge branch 'mbedtls'
Replace Crypto++ 5.6.2 with Mbed TLS 3.6.0 Newer compilers are starting to show the age of the crypto library we've been using, as it is sometimes a pain to recompile compass lately. So, the tracked version of Crypto++ was at least due for an upgrade. However, I plan to soon begin reimplementing compass in C. So, I'm taking this opportunity to first just migrate the cryptography library to a newer C alternative. This branch does so, and integrates its use into the current C++ version of compass. * mbedtls: Remove unnecessary exception handler catch block Refactor random password generation to use mbedtls entropy source Refactor SHA256 function to use mbedtls Refactor AES functions to use mbedtls Add Mbedtls library Remove Crypto++ library
Diffstat (limited to 'cryptopp562/gf2n.h')
-rw-r--r--cryptopp562/gf2n.h369
1 files changed, 0 insertions, 369 deletions
diff --git a/cryptopp562/gf2n.h b/cryptopp562/gf2n.h
deleted file mode 100644
index 67ade64..0000000
--- a/cryptopp562/gf2n.h
+++ /dev/null
@@ -1,369 +0,0 @@
-#ifndef CRYPTOPP_GF2N_H
-#define CRYPTOPP_GF2N_H
-
-/*! \file */
-
-#include "cryptlib.h"
-#include "secblock.h"
-#include "misc.h"
-#include "algebra.h"
-
-#include <iosfwd>
-
-NAMESPACE_BEGIN(CryptoPP)
-
-//! Polynomial with Coefficients in GF(2)
-/*! \nosubgrouping */
-class CRYPTOPP_DLL PolynomialMod2
-{
-public:
- //! \name ENUMS, EXCEPTIONS, and TYPEDEFS
- //@{
- //! divide by zero exception
- class DivideByZero : public Exception
- {
- public:
- DivideByZero() : Exception(OTHER_ERROR, "PolynomialMod2: division by zero") {}
- };
-
- typedef unsigned int RandomizationParameter;
- //@}
-
- //! \name CREATORS
- //@{
- //! creates the zero polynomial
- PolynomialMod2();
- //! copy constructor
- PolynomialMod2(const PolynomialMod2& t);
-
- //! convert from word
- /*! value should be encoded with the least significant bit as coefficient to x^0
- and most significant bit as coefficient to x^(WORD_BITS-1)
- bitLength denotes how much memory to allocate initially
- */
- PolynomialMod2(word value, size_t bitLength=WORD_BITS);
-
- //! convert from big-endian byte array
- PolynomialMod2(const byte *encodedPoly, size_t byteCount)
- {Decode(encodedPoly, byteCount);}
-
- //! convert from big-endian form stored in a BufferedTransformation
- PolynomialMod2(BufferedTransformation &encodedPoly, size_t byteCount)
- {Decode(encodedPoly, byteCount);}
-
- //! create a random polynomial uniformly distributed over all polynomials with degree less than bitcount
- PolynomialMod2(RandomNumberGenerator &rng, size_t bitcount)
- {Randomize(rng, bitcount);}
-
- //! return x^i
- static PolynomialMod2 CRYPTOPP_API Monomial(size_t i);
- //! return x^t0 + x^t1 + x^t2
- static PolynomialMod2 CRYPTOPP_API Trinomial(size_t t0, size_t t1, size_t t2);
- //! return x^t0 + x^t1 + x^t2 + x^t3 + x^t4
- static PolynomialMod2 CRYPTOPP_API Pentanomial(size_t t0, size_t t1, size_t t2, size_t t3, size_t t4);
- //! return x^(n-1) + ... + x + 1
- static PolynomialMod2 CRYPTOPP_API AllOnes(size_t n);
-
- //!
- static const PolynomialMod2 & CRYPTOPP_API Zero();
- //!
- static const PolynomialMod2 & CRYPTOPP_API One();
- //@}
-
- //! \name ENCODE/DECODE
- //@{
- //! minimum number of bytes to encode this polynomial
- /*! MinEncodedSize of 0 is 1 */
- unsigned int MinEncodedSize() const {return STDMAX(1U, ByteCount());}
-
- //! encode in big-endian format
- /*! if outputLen < MinEncodedSize, the most significant bytes will be dropped
- if outputLen > MinEncodedSize, the most significant bytes will be padded
- */
- void Encode(byte *output, size_t outputLen) const;
- //!
- void Encode(BufferedTransformation &bt, size_t outputLen) const;
-
- //!
- void Decode(const byte *input, size_t inputLen);
- //!
- //* Precondition: bt.MaxRetrievable() >= inputLen
- void Decode(BufferedTransformation &bt, size_t inputLen);
-
- //! encode value as big-endian octet string
- void DEREncodeAsOctetString(BufferedTransformation &bt, size_t length) const;
- //! decode value as big-endian octet string
- void BERDecodeAsOctetString(BufferedTransformation &bt, size_t length);
- //@}
-
- //! \name ACCESSORS
- //@{
- //! number of significant bits = Degree() + 1
- unsigned int BitCount() const;
- //! number of significant bytes = ceiling(BitCount()/8)
- unsigned int ByteCount() const;
- //! number of significant words = ceiling(ByteCount()/sizeof(word))
- unsigned int WordCount() const;
-
- //! return the n-th bit, n=0 being the least significant bit
- bool GetBit(size_t n) const {return GetCoefficient(n)!=0;}
- //! return the n-th byte
- byte GetByte(size_t n) const;
-
- //! the zero polynomial will return a degree of -1
- signed int Degree() const {return BitCount()-1;}
- //! degree + 1
- unsigned int CoefficientCount() const {return BitCount();}
- //! return coefficient for x^i
- int GetCoefficient(size_t i) const
- {return (i/WORD_BITS < reg.size()) ? int(reg[i/WORD_BITS] >> (i % WORD_BITS)) & 1 : 0;}
- //! return coefficient for x^i
- int operator[](unsigned int i) const {return GetCoefficient(i);}
-
- //!
- bool IsZero() const {return !*this;}
- //!
- bool Equals(const PolynomialMod2 &rhs) const;
- //@}
-
- //! \name MANIPULATORS
- //@{
- //!
- PolynomialMod2& operator=(const PolynomialMod2& t);
- //!
- PolynomialMod2& operator&=(const PolynomialMod2& t);
- //!
- PolynomialMod2& operator^=(const PolynomialMod2& t);
- //!
- PolynomialMod2& operator+=(const PolynomialMod2& t) {return *this ^= t;}
- //!
- PolynomialMod2& operator-=(const PolynomialMod2& t) {return *this ^= t;}
- //!
- PolynomialMod2& operator*=(const PolynomialMod2& t);
- //!
- PolynomialMod2& operator/=(const PolynomialMod2& t);
- //!
- PolynomialMod2& operator%=(const PolynomialMod2& t);
- //!
- PolynomialMod2& operator<<=(unsigned int);
- //!
- PolynomialMod2& operator>>=(unsigned int);
-
- //!
- void Randomize(RandomNumberGenerator &rng, size_t bitcount);
-
- //!
- void SetBit(size_t i, int value = 1);
- //! set the n-th byte to value
- void SetByte(size_t n, byte value);
-
- //!
- void SetCoefficient(size_t i, int value) {SetBit(i, value);}
-
- //!
- void swap(PolynomialMod2 &a) {reg.swap(a.reg);}
- //@}
-
- //! \name UNARY OPERATORS
- //@{
- //!
- bool operator!() const;
- //!
- PolynomialMod2 operator+() const {return *this;}
- //!
- PolynomialMod2 operator-() const {return *this;}
- //@}
-
- //! \name BINARY OPERATORS
- //@{
- //!
- PolynomialMod2 And(const PolynomialMod2 &b) const;
- //!
- PolynomialMod2 Xor(const PolynomialMod2 &b) const;
- //!
- PolynomialMod2 Plus(const PolynomialMod2 &b) const {return Xor(b);}
- //!
- PolynomialMod2 Minus(const PolynomialMod2 &b) const {return Xor(b);}
- //!
- PolynomialMod2 Times(const PolynomialMod2 &b) const;
- //!
- PolynomialMod2 DividedBy(const PolynomialMod2 &b) const;
- //!
- PolynomialMod2 Modulo(const PolynomialMod2 &b) const;
-
- //!
- PolynomialMod2 operator>>(unsigned int n) const;
- //!
- PolynomialMod2 operator<<(unsigned int n) const;
- //@}
-
- //! \name OTHER ARITHMETIC FUNCTIONS
- //@{
- //! sum modulo 2 of all coefficients
- unsigned int Parity() const;
-
- //! check for irreducibility
- bool IsIrreducible() const;
-
- //! is always zero since we're working modulo 2
- PolynomialMod2 Doubled() const {return Zero();}
- //!
- PolynomialMod2 Squared() const;
-
- //! only 1 is a unit
- bool IsUnit() const {return Equals(One());}
- //! return inverse if *this is a unit, otherwise return 0
- PolynomialMod2 MultiplicativeInverse() const {return IsUnit() ? One() : Zero();}
-
- //! greatest common divisor
- static PolynomialMod2 CRYPTOPP_API Gcd(const PolynomialMod2 &a, const PolynomialMod2 &n);
- //! calculate multiplicative inverse of *this mod n
- PolynomialMod2 InverseMod(const PolynomialMod2 &) const;
-
- //! calculate r and q such that (a == d*q + r) && (deg(r) < deg(d))
- static void CRYPTOPP_API Divide(PolynomialMod2 &r, PolynomialMod2 &q, const PolynomialMod2 &a, const PolynomialMod2 &d);
- //@}
-
- //! \name INPUT/OUTPUT
- //@{
- //!
- friend std::ostream& operator<<(std::ostream& out, const PolynomialMod2 &a);
- //@}
-
-private:
- friend class GF2NT;
-
- SecWordBlock reg;
-};
-
-//!
-inline bool operator==(const CryptoPP::PolynomialMod2 &a, const CryptoPP::PolynomialMod2 &b)
-{return a.Equals(b);}
-//!
-inline bool operator!=(const CryptoPP::PolynomialMod2 &a, const CryptoPP::PolynomialMod2 &b)
-{return !(a==b);}
-//! compares degree
-inline bool operator> (const CryptoPP::PolynomialMod2 &a, const CryptoPP::PolynomialMod2 &b)
-{return a.Degree() > b.Degree();}
-//! compares degree
-inline bool operator>=(const CryptoPP::PolynomialMod2 &a, const CryptoPP::PolynomialMod2 &b)
-{return a.Degree() >= b.Degree();}
-//! compares degree
-inline bool operator< (const CryptoPP::PolynomialMod2 &a, const CryptoPP::PolynomialMod2 &b)
-{return a.Degree() < b.Degree();}
-//! compares degree
-inline bool operator<=(const CryptoPP::PolynomialMod2 &a, const CryptoPP::PolynomialMod2 &b)
-{return a.Degree() <= b.Degree();}
-//!
-inline CryptoPP::PolynomialMod2 operator&(const CryptoPP::PolynomialMod2 &a, const CryptoPP::PolynomialMod2 &b) {return a.And(b);}
-//!
-inline CryptoPP::PolynomialMod2 operator^(const CryptoPP::PolynomialMod2 &a, const CryptoPP::PolynomialMod2 &b) {return a.Xor(b);}
-//!
-inline CryptoPP::PolynomialMod2 operator+(const CryptoPP::PolynomialMod2 &a, const CryptoPP::PolynomialMod2 &b) {return a.Plus(b);}
-//!
-inline CryptoPP::PolynomialMod2 operator-(const CryptoPP::PolynomialMod2 &a, const CryptoPP::PolynomialMod2 &b) {return a.Minus(b);}
-//!
-inline CryptoPP::PolynomialMod2 operator*(const CryptoPP::PolynomialMod2 &a, const CryptoPP::PolynomialMod2 &b) {return a.Times(b);}
-//!
-inline CryptoPP::PolynomialMod2 operator/(const CryptoPP::PolynomialMod2 &a, const CryptoPP::PolynomialMod2 &b) {return a.DividedBy(b);}
-//!
-inline CryptoPP::PolynomialMod2 operator%(const CryptoPP::PolynomialMod2 &a, const CryptoPP::PolynomialMod2 &b) {return a.Modulo(b);}
-
-// CodeWarrior 8 workaround: put these template instantiations after overloaded operator declarations,
-// but before the use of QuotientRing<EuclideanDomainOf<PolynomialMod2> > for VC .NET 2003
-CRYPTOPP_DLL_TEMPLATE_CLASS AbstractGroup<PolynomialMod2>;
-CRYPTOPP_DLL_TEMPLATE_CLASS AbstractRing<PolynomialMod2>;
-CRYPTOPP_DLL_TEMPLATE_CLASS AbstractEuclideanDomain<PolynomialMod2>;
-CRYPTOPP_DLL_TEMPLATE_CLASS EuclideanDomainOf<PolynomialMod2>;
-CRYPTOPP_DLL_TEMPLATE_CLASS QuotientRing<EuclideanDomainOf<PolynomialMod2> >;
-
-//! GF(2^n) with Polynomial Basis
-class CRYPTOPP_DLL GF2NP : public QuotientRing<EuclideanDomainOf<PolynomialMod2> >
-{
-public:
- GF2NP(const PolynomialMod2 &modulus);
-
- virtual GF2NP * Clone() const {return new GF2NP(*this);}
- virtual void DEREncode(BufferedTransformation &bt) const
- {assert(false);} // no ASN.1 syntax yet for general polynomial basis
-
- void DEREncodeElement(BufferedTransformation &out, const Element &a) const;
- void BERDecodeElement(BufferedTransformation &in, Element &a) const;
-
- bool Equal(const Element &a, const Element &b) const
- {assert(a.Degree() < m_modulus.Degree() && b.Degree() < m_modulus.Degree()); return a.Equals(b);}
-
- bool IsUnit(const Element &a) const
- {assert(a.Degree() < m_modulus.Degree()); return !!a;}
-
- unsigned int MaxElementBitLength() const
- {return m;}
-
- unsigned int MaxElementByteLength() const
- {return (unsigned int)BitsToBytes(MaxElementBitLength());}
-
- Element SquareRoot(const Element &a) const;
-
- Element HalfTrace(const Element &a) const;
-
- // returns z such that z^2 + z == a
- Element SolveQuadraticEquation(const Element &a) const;
-
-protected:
- unsigned int m;
-};
-
-//! GF(2^n) with Trinomial Basis
-class CRYPTOPP_DLL GF2NT : public GF2NP
-{
-public:
- // polynomial modulus = x^t0 + x^t1 + x^t2, t0 > t1 > t2
- GF2NT(unsigned int t0, unsigned int t1, unsigned int t2);
-
- GF2NP * Clone() const {return new GF2NT(*this);}
- void DEREncode(BufferedTransformation &bt) const;
-
- const Element& Multiply(const Element &a, const Element &b) const;
-
- const Element& Square(const Element &a) const
- {return Reduced(a.Squared());}
-
- const Element& MultiplicativeInverse(const Element &a) const;
-
-private:
- const Element& Reduced(const Element &a) const;
-
- unsigned int t0, t1;
- mutable PolynomialMod2 result;
-};
-
-//! GF(2^n) with Pentanomial Basis
-class CRYPTOPP_DLL GF2NPP : public GF2NP
-{
-public:
- // polynomial modulus = x^t0 + x^t1 + x^t2 + x^t3 + x^t4, t0 > t1 > t2 > t3 > t4
- GF2NPP(unsigned int t0, unsigned int t1, unsigned int t2, unsigned int t3, unsigned int t4)
- : GF2NP(PolynomialMod2::Pentanomial(t0, t1, t2, t3, t4)), t0(t0), t1(t1), t2(t2), t3(t3) {}
-
- GF2NP * Clone() const {return new GF2NPP(*this);}
- void DEREncode(BufferedTransformation &bt) const;
-
-private:
- unsigned int t0, t1, t2, t3;
-};
-
-// construct new GF2NP from the ASN.1 sequence Characteristic-two
-CRYPTOPP_DLL GF2NP * CRYPTOPP_API BERDecodeGF2NP(BufferedTransformation &bt);
-
-NAMESPACE_END
-
-#ifndef __BORLANDC__
-NAMESPACE_BEGIN(std)
-template<> inline void swap(CryptoPP::PolynomialMod2 &a, CryptoPP::PolynomialMod2 &b)
-{
- a.swap(b);
-}
-NAMESPACE_END
-#endif
-
-#endif