// ida.cpp - written and placed in the public domain by Wei Dai #include "pch.h" #include "ida.h" #include "algebra.h" #include "gf2_32.h" #include "polynomi.h" #include <functional> #include "polynomi.cpp" ANONYMOUS_NAMESPACE_BEGIN static const CryptoPP::GF2_32 field; NAMESPACE_END using namespace std; NAMESPACE_BEGIN(CryptoPP) void RawIDA::IsolatedInitialize(const NameValuePairs ¶meters) { if (!parameters.GetIntValue("RecoveryThreshold", m_threshold)) throw InvalidArgument("RawIDA: missing RecoveryThreshold argument"); if (m_threshold <= 0) throw InvalidArgument("RawIDA: RecoveryThreshold must be greater than 0"); m_lastMapPosition = m_inputChannelMap.end(); m_channelsReady = 0; m_channelsFinished = 0; m_w.New(m_threshold); m_y.New(m_threshold); m_inputQueues.reserve(m_threshold); m_outputChannelIds.clear(); m_outputChannelIdStrings.clear(); m_outputQueues.clear(); word32 outputChannelID; if (parameters.GetValue("OutputChannelID", outputChannelID)) AddOutputChannel(outputChannelID); else { int nShares = parameters.GetIntValueWithDefault("NumberOfShares", m_threshold); for (int i=0; i<nShares; i++) AddOutputChannel(i); } } unsigned int RawIDA::InsertInputChannel(word32 channelId) { if (m_lastMapPosition != m_inputChannelMap.end()) { if (m_lastMapPosition->first == channelId) goto skipFind; ++m_lastMapPosition; if (m_lastMapPosition != m_inputChannelMap.end() && m_lastMapPosition->first == channelId) goto skipFind; } m_lastMapPosition = m_inputChannelMap.find(channelId); skipFind: if (m_lastMapPosition == m_inputChannelMap.end()) { if (m_inputChannelIds.size() == m_threshold) return m_threshold; m_lastMapPosition = m_inputChannelMap.insert(InputChannelMap::value_type(channelId, (unsigned int)m_inputChannelIds.size())).first; m_inputQueues.push_back(MessageQueue()); m_inputChannelIds.push_back(channelId); if (m_inputChannelIds.size() == m_threshold) PrepareInterpolation(); } return m_lastMapPosition->second; } unsigned int RawIDA::LookupInputChannel(word32 channelId) const { map<word32, unsigned int>::const_iterator it = m_inputChannelMap.find(channelId); if (it == m_inputChannelMap.end()) return m_threshold; else return it->second; } void RawIDA::ChannelData(word32 channelId, const byte *inString, size_t length, bool messageEnd) { int i = InsertInputChannel(channelId); if (i < m_threshold) { lword size = m_inputQueues[i].MaxRetrievable(); m_inputQueues[i].Put(inString, length); if (size < 4 && size + length >= 4) { m_channelsReady++; if (m_channelsReady == m_threshold) ProcessInputQueues(); } if (messageEnd) { m_inputQueues[i].MessageEnd(); if (m_inputQueues[i].NumberOfMessages() == 1) { m_channelsFinished++; if (m_channelsFinished == m_threshold) { m_channelsReady = 0; for (i=0; i<m_threshold; i++) m_channelsReady += m_inputQueues[i].AnyRetrievable(); ProcessInputQueues(); } } } } } lword RawIDA::InputBuffered(word32 channelId) const { int i = LookupInputChannel(channelId); return i < m_threshold ? m_inputQueues[i].MaxRetrievable() : 0; } void RawIDA::ComputeV(unsigned int i) { if (i >= m_v.size()) { m_v.resize(i+1); m_outputToInput.resize(i+1); } m_outputToInput[i] = LookupInputChannel(m_outputChannelIds[i]); if (m_outputToInput[i] == m_threshold && i * m_threshold <= 1000*1000) { m_v[i].resize(m_threshold); PrepareBulkPolynomialInterpolationAt(field, m_v[i].begin(), m_outputChannelIds[i], &(m_inputChannelIds[0]), m_w.begin(), m_threshold); } } void RawIDA::AddOutputChannel(word32 channelId) { m_outputChannelIds.push_back(channelId); m_outputChannelIdStrings.push_back(WordToString(channelId)); m_outputQueues.push_back(ByteQueue()); if (m_inputChannelIds.size() == m_threshold) ComputeV((unsigned int)m_outputChannelIds.size() - 1); } void RawIDA::PrepareInterpolation() { assert(m_inputChannelIds.size() == m_threshold); PrepareBulkPolynomialInterpolation(field, m_w.begin(), &(m_inputChannelIds[0]), m_threshold); for (unsigned int i=0; i<m_outputChannelIds.size(); i++) ComputeV(i); } void RawIDA::ProcessInputQueues() { bool finished = (m_channelsFinished == m_threshold); int i; while (finished ? m_channelsReady > 0 : m_channelsReady == m_threshold) { m_channelsReady = 0; for (i=0; i<m_threshold; i++) { MessageQueue &queue = m_inputQueues[i]; queue.GetWord32(m_y[i]); if (finished) m_channelsReady += queue.AnyRetrievable(); else m_channelsReady += queue.NumberOfMessages() > 0 || queue.MaxRetrievable() >= 4; } for (i=0; (unsigned int)i<m_outputChannelIds.size(); i++) { if (m_outputToInput[i] != m_threshold) m_outputQueues[i].PutWord32(m_y[m_outputToInput[i]]); else if (m_v[i].size() == m_threshold) m_outputQueues[i].PutWord32(BulkPolynomialInterpolateAt(field, m_y.begin(), m_v[i].begin(), m_threshold)); else { m_u.resize(m_threshold); PrepareBulkPolynomialInterpolationAt(field, m_u.begin(), m_outputChannelIds[i], &(m_inputChannelIds[0]), m_w.begin(), m_threshold); m_outputQueues[i].PutWord32(BulkPolynomialInterpolateAt(field, m_y.begin(), m_u.begin(), m_threshold)); } } } if (m_outputChannelIds.size() > 0 && m_outputQueues[0].AnyRetrievable()) FlushOutputQueues(); if (finished) { OutputMessageEnds(); m_channelsReady = 0; m_channelsFinished = 0; m_v.clear(); vector<MessageQueue> inputQueues; vector<word32> inputChannelIds; inputQueues.swap(m_inputQueues); inputChannelIds.swap(m_inputChannelIds); m_inputChannelMap.clear(); m_lastMapPosition = m_inputChannelMap.end(); for (i=0; i<m_threshold; i++) { inputQueues[i].GetNextMessage(); inputQueues[i].TransferAllTo(*AttachedTransformation(), WordToString(inputChannelIds[i])); } } } void RawIDA::FlushOutputQueues() { for (unsigned int i=0; i<m_outputChannelIds.size(); i++) m_outputQueues[i].TransferAllTo(*AttachedTransformation(), m_outputChannelIdStrings[i]); } void RawIDA::OutputMessageEnds() { if (GetAutoSignalPropagation() != 0) { for (unsigned int i=0; i<m_outputChannelIds.size(); i++) AttachedTransformation()->ChannelMessageEnd(m_outputChannelIdStrings[i], GetAutoSignalPropagation()-1); } } // **************************************************************** void SecretSharing::IsolatedInitialize(const NameValuePairs ¶meters) { m_pad = parameters.GetValueWithDefault("AddPadding", true); m_ida.IsolatedInitialize(parameters); } size_t SecretSharing::Put2(const byte *begin, size_t length, int messageEnd, bool blocking) { if (!blocking) throw BlockingInputOnly("SecretSharing"); SecByteBlock buf(UnsignedMin(256, length)); unsigned int threshold = m_ida.GetThreshold(); while (length > 0) { size_t len = STDMIN(length, buf.size()); m_ida.ChannelData(0xffffffff, begin, len, false); for (unsigned int i=0; i<threshold-1; i++) { m_rng.GenerateBlock(buf, len); m_ida.ChannelData(i, buf, len, false); } length -= len; begin += len; } if (messageEnd) { m_ida.SetAutoSignalPropagation(messageEnd-1); if (m_pad) { SecretSharing::Put(1); while (m_ida.InputBuffered(0xffffffff) > 0) SecretSharing::Put(0); } m_ida.ChannelData(0xffffffff, NULL, 0, true); for (unsigned int i=0; i<m_ida.GetThreshold()-1; i++) m_ida.ChannelData(i, NULL, 0, true); } return 0; } void SecretRecovery::IsolatedInitialize(const NameValuePairs ¶meters) { m_pad = parameters.GetValueWithDefault("RemovePadding", true); RawIDA::IsolatedInitialize(CombinedNameValuePairs(parameters, MakeParameters("OutputChannelID", (word32)0xffffffff))); } void SecretRecovery::FlushOutputQueues() { if (m_pad) m_outputQueues[0].TransferTo(*AttachedTransformation(), m_outputQueues[0].MaxRetrievable()-4); else m_outputQueues[0].TransferTo(*AttachedTransformation()); } void SecretRecovery::OutputMessageEnds() { if (m_pad) { PaddingRemover paddingRemover(new Redirector(*AttachedTransformation())); m_outputQueues[0].TransferAllTo(paddingRemover); } if (GetAutoSignalPropagation() != 0) AttachedTransformation()->MessageEnd(GetAutoSignalPropagation()-1); } // **************************************************************** void InformationDispersal::IsolatedInitialize(const NameValuePairs ¶meters) { m_nextChannel = 0; m_pad = parameters.GetValueWithDefault("AddPadding", true); m_ida.IsolatedInitialize(parameters); } size_t InformationDispersal::Put2(const byte *begin, size_t length, int messageEnd, bool blocking) { if (!blocking) throw BlockingInputOnly("InformationDispersal"); while (length--) { m_ida.ChannelData(m_nextChannel, begin, 1, false); begin++; m_nextChannel++; if (m_nextChannel == m_ida.GetThreshold()) m_nextChannel = 0; } if (messageEnd) { m_ida.SetAutoSignalPropagation(messageEnd-1); if (m_pad) InformationDispersal::Put(1); for (word32 i=0; i<m_ida.GetThreshold(); i++) m_ida.ChannelData(i, NULL, 0, true); } return 0; } void InformationRecovery::IsolatedInitialize(const NameValuePairs ¶meters) { m_pad = parameters.GetValueWithDefault("RemovePadding", true); RawIDA::IsolatedInitialize(parameters); } void InformationRecovery::FlushOutputQueues() { while (m_outputQueues[0].AnyRetrievable()) { for (unsigned int i=0; i<m_outputChannelIds.size(); i++) m_outputQueues[i].TransferTo(m_queue, 1); } if (m_pad) m_queue.TransferTo(*AttachedTransformation(), m_queue.MaxRetrievable()-4*m_threshold); else m_queue.TransferTo(*AttachedTransformation()); } void InformationRecovery::OutputMessageEnds() { if (m_pad) { PaddingRemover paddingRemover(new Redirector(*AttachedTransformation())); m_queue.TransferAllTo(paddingRemover); } if (GetAutoSignalPropagation() != 0) AttachedTransformation()->MessageEnd(GetAutoSignalPropagation()-1); } size_t PaddingRemover::Put2(const byte *begin, size_t length, int messageEnd, bool blocking) { if (!blocking) throw BlockingInputOnly("PaddingRemover"); const byte *const end = begin + length; if (m_possiblePadding) { size_t len = find_if(begin, end, bind2nd(not_equal_to<byte>(), 0)) - begin; m_zeroCount += len; begin += len; if (begin == end) return 0; AttachedTransformation()->Put(1); while (m_zeroCount--) AttachedTransformation()->Put(0); AttachedTransformation()->Put(*begin++); m_possiblePadding = false; } #if defined(_MSC_VER) && !defined(__MWERKS__) && (_MSC_VER <= 1300) // VC60 and VC7 workaround: built-in reverse_iterator has two template parameters, Dinkumware only has one typedef reverse_bidirectional_iterator<const byte *, const byte> RevIt; #elif defined(_RWSTD_NO_CLASS_PARTIAL_SPEC) typedef reverse_iterator<const byte *, random_access_iterator_tag, const byte> RevIt; #else typedef reverse_iterator<const byte *> RevIt; #endif const byte *x = find_if(RevIt(end), RevIt(begin), bind2nd(not_equal_to<byte>(), 0)).base(); if (x != begin && *(x-1) == 1) { AttachedTransformation()->Put(begin, x-begin-1); m_possiblePadding = true; m_zeroCount = end - x; } else AttachedTransformation()->Put(begin, end-begin); if (messageEnd) { m_possiblePadding = false; Output(0, begin, length, messageEnd, blocking); } return 0; } NAMESPACE_END