diff options
author | Malfurious <m@lfurio.us> | 2024-10-21 11:09:00 -0400 |
---|---|---|
committer | Malfurious <m@lfurio.us> | 2024-10-24 06:41:41 -0400 |
commit | 5494fc310acf0aabb9d828451331e44483eb21c7 (patch) | |
tree | 77280a586d52470fca89b9ed73f5f1faaf7907c6 /cryptopp562/algebra.h | |
parent | 428471d39fb8c205a9fad899c88c30a2cb7df685 (diff) | |
download | compass-5494fc310acf0aabb9d828451331e44483eb21c7.tar.gz compass-5494fc310acf0aabb9d828451331e44483eb21c7.zip |
Remove Crypto++ library
The tracked version of Crypto++ is going on 10 years old and doesn't
always compile properly on modern tooling.
This removes the entire subdirectory as well as references to files in
the build script. Due to the number of files touched by this commit, I
opt to add its replacement in the next commit.
Signed-off-by: Malfurious <m@lfurio.us>
Diffstat (limited to '')
-rw-r--r-- | cryptopp562/algebra.h | 285 |
1 files changed, 0 insertions, 285 deletions
diff --git a/cryptopp562/algebra.h b/cryptopp562/algebra.h deleted file mode 100644 index 13038bd..0000000 --- a/cryptopp562/algebra.h +++ /dev/null @@ -1,285 +0,0 @@ -#ifndef CRYPTOPP_ALGEBRA_H -#define CRYPTOPP_ALGEBRA_H - -#include "config.h" - -NAMESPACE_BEGIN(CryptoPP) - -class Integer; - -// "const Element&" returned by member functions are references -// to internal data members. Since each object may have only -// one such data member for holding results, the following code -// will produce incorrect results: -// abcd = group.Add(group.Add(a,b), group.Add(c,d)); -// But this should be fine: -// abcd = group.Add(a, group.Add(b, group.Add(c,d)); - -//! Abstract Group -template <class T> class CRYPTOPP_NO_VTABLE AbstractGroup -{ -public: - typedef T Element; - - virtual ~AbstractGroup() {} - - virtual bool Equal(const Element &a, const Element &b) const =0; - virtual const Element& Identity() const =0; - virtual const Element& Add(const Element &a, const Element &b) const =0; - virtual const Element& Inverse(const Element &a) const =0; - virtual bool InversionIsFast() const {return false;} - - virtual const Element& Double(const Element &a) const; - virtual const Element& Subtract(const Element &a, const Element &b) const; - virtual Element& Accumulate(Element &a, const Element &b) const; - virtual Element& Reduce(Element &a, const Element &b) const; - - virtual Element ScalarMultiply(const Element &a, const Integer &e) const; - virtual Element CascadeScalarMultiply(const Element &x, const Integer &e1, const Element &y, const Integer &e2) const; - - virtual void SimultaneousMultiply(Element *results, const Element &base, const Integer *exponents, unsigned int exponentsCount) const; -}; - -//! Abstract Ring -template <class T> class CRYPTOPP_NO_VTABLE AbstractRing : public AbstractGroup<T> -{ -public: - typedef T Element; - - AbstractRing() {m_mg.m_pRing = this;} - AbstractRing(const AbstractRing &source) {m_mg.m_pRing = this;} - AbstractRing& operator=(const AbstractRing &source) {return *this;} - - virtual bool IsUnit(const Element &a) const =0; - virtual const Element& MultiplicativeIdentity() const =0; - virtual const Element& Multiply(const Element &a, const Element &b) const =0; - virtual const Element& MultiplicativeInverse(const Element &a) const =0; - - virtual const Element& Square(const Element &a) const; - virtual const Element& Divide(const Element &a, const Element &b) const; - - virtual Element Exponentiate(const Element &a, const Integer &e) const; - virtual Element CascadeExponentiate(const Element &x, const Integer &e1, const Element &y, const Integer &e2) const; - - virtual void SimultaneousExponentiate(Element *results, const Element &base, const Integer *exponents, unsigned int exponentsCount) const; - - virtual const AbstractGroup<T>& MultiplicativeGroup() const - {return m_mg;} - -private: - class MultiplicativeGroupT : public AbstractGroup<T> - { - public: - const AbstractRing<T>& GetRing() const - {return *m_pRing;} - - bool Equal(const Element &a, const Element &b) const - {return GetRing().Equal(a, b);} - - const Element& Identity() const - {return GetRing().MultiplicativeIdentity();} - - const Element& Add(const Element &a, const Element &b) const - {return GetRing().Multiply(a, b);} - - Element& Accumulate(Element &a, const Element &b) const - {return a = GetRing().Multiply(a, b);} - - const Element& Inverse(const Element &a) const - {return GetRing().MultiplicativeInverse(a);} - - const Element& Subtract(const Element &a, const Element &b) const - {return GetRing().Divide(a, b);} - - Element& Reduce(Element &a, const Element &b) const - {return a = GetRing().Divide(a, b);} - - const Element& Double(const Element &a) const - {return GetRing().Square(a);} - - Element ScalarMultiply(const Element &a, const Integer &e) const - {return GetRing().Exponentiate(a, e);} - - Element CascadeScalarMultiply(const Element &x, const Integer &e1, const Element &y, const Integer &e2) const - {return GetRing().CascadeExponentiate(x, e1, y, e2);} - - void SimultaneousMultiply(Element *results, const Element &base, const Integer *exponents, unsigned int exponentsCount) const - {GetRing().SimultaneousExponentiate(results, base, exponents, exponentsCount);} - - const AbstractRing<T> *m_pRing; - }; - - MultiplicativeGroupT m_mg; -}; - -// ******************************************************** - -//! Base and Exponent -template <class T, class E = Integer> -struct BaseAndExponent -{ -public: - BaseAndExponent() {} - BaseAndExponent(const T &base, const E &exponent) : base(base), exponent(exponent) {} - bool operator<(const BaseAndExponent<T, E> &rhs) const {return exponent < rhs.exponent;} - T base; - E exponent; -}; - -// VC60 workaround: incomplete member template support -template <class Element, class Iterator> - Element GeneralCascadeMultiplication(const AbstractGroup<Element> &group, Iterator begin, Iterator end); -template <class Element, class Iterator> - Element GeneralCascadeExponentiation(const AbstractRing<Element> &ring, Iterator begin, Iterator end); - -// ******************************************************** - -//! Abstract Euclidean Domain -template <class T> class CRYPTOPP_NO_VTABLE AbstractEuclideanDomain : public AbstractRing<T> -{ -public: - typedef T Element; - - virtual void DivisionAlgorithm(Element &r, Element &q, const Element &a, const Element &d) const =0; - - virtual const Element& Mod(const Element &a, const Element &b) const =0; - virtual const Element& Gcd(const Element &a, const Element &b) const; - -protected: - mutable Element result; -}; - -// ******************************************************** - -//! EuclideanDomainOf -template <class T> class EuclideanDomainOf : public AbstractEuclideanDomain<T> -{ -public: - typedef T Element; - - EuclideanDomainOf() {} - - bool Equal(const Element &a, const Element &b) const - {return a==b;} - - const Element& Identity() const - {return Element::Zero();} - - const Element& Add(const Element &a, const Element &b) const - {return result = a+b;} - - Element& Accumulate(Element &a, const Element &b) const - {return a+=b;} - - const Element& Inverse(const Element &a) const - {return result = -a;} - - const Element& Subtract(const Element &a, const Element &b) const - {return result = a-b;} - - Element& Reduce(Element &a, const Element &b) const - {return a-=b;} - - const Element& Double(const Element &a) const - {return result = a.Doubled();} - - const Element& MultiplicativeIdentity() const - {return Element::One();} - - const Element& Multiply(const Element &a, const Element &b) const - {return result = a*b;} - - const Element& Square(const Element &a) const - {return result = a.Squared();} - - bool IsUnit(const Element &a) const - {return a.IsUnit();} - - const Element& MultiplicativeInverse(const Element &a) const - {return result = a.MultiplicativeInverse();} - - const Element& Divide(const Element &a, const Element &b) const - {return result = a/b;} - - const Element& Mod(const Element &a, const Element &b) const - {return result = a%b;} - - void DivisionAlgorithm(Element &r, Element &q, const Element &a, const Element &d) const - {Element::Divide(r, q, a, d);} - - bool operator==(const EuclideanDomainOf<T> &rhs) const - {return true;} - -private: - mutable Element result; -}; - -//! Quotient Ring -template <class T> class QuotientRing : public AbstractRing<typename T::Element> -{ -public: - typedef T EuclideanDomain; - typedef typename T::Element Element; - - QuotientRing(const EuclideanDomain &domain, const Element &modulus) - : m_domain(domain), m_modulus(modulus) {} - - const EuclideanDomain & GetDomain() const - {return m_domain;} - - const Element& GetModulus() const - {return m_modulus;} - - bool Equal(const Element &a, const Element &b) const - {return m_domain.Equal(m_domain.Mod(m_domain.Subtract(a, b), m_modulus), m_domain.Identity());} - - const Element& Identity() const - {return m_domain.Identity();} - - const Element& Add(const Element &a, const Element &b) const - {return m_domain.Add(a, b);} - - Element& Accumulate(Element &a, const Element &b) const - {return m_domain.Accumulate(a, b);} - - const Element& Inverse(const Element &a) const - {return m_domain.Inverse(a);} - - const Element& Subtract(const Element &a, const Element &b) const - {return m_domain.Subtract(a, b);} - - Element& Reduce(Element &a, const Element &b) const - {return m_domain.Reduce(a, b);} - - const Element& Double(const Element &a) const - {return m_domain.Double(a);} - - bool IsUnit(const Element &a) const - {return m_domain.IsUnit(m_domain.Gcd(a, m_modulus));} - - const Element& MultiplicativeIdentity() const - {return m_domain.MultiplicativeIdentity();} - - const Element& Multiply(const Element &a, const Element &b) const - {return m_domain.Mod(m_domain.Multiply(a, b), m_modulus);} - - const Element& Square(const Element &a) const - {return m_domain.Mod(m_domain.Square(a), m_modulus);} - - const Element& MultiplicativeInverse(const Element &a) const; - - bool operator==(const QuotientRing<T> &rhs) const - {return m_domain == rhs.m_domain && m_modulus == rhs.m_modulus;} - -protected: - EuclideanDomain m_domain; - Element m_modulus; -}; - -NAMESPACE_END - -#ifdef CRYPTOPP_MANUALLY_INSTANTIATE_TEMPLATES -#include "algebra.cpp" -#endif - -#endif |